北京市朝阳区北京八十中学2022-2023学年高二数学第二学期期末联考试题含解析_第1页
北京市朝阳区北京八十中学2022-2023学年高二数学第二学期期末联考试题含解析_第2页
北京市朝阳区北京八十中学2022-2023学年高二数学第二学期期末联考试题含解析_第3页
北京市朝阳区北京八十中学2022-2023学年高二数学第二学期期末联考试题含解析_第4页
北京市朝阳区北京八十中学2022-2023学年高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列的前项和为,已知,,则()A.270 B.150 C.80 D.702.把一枚质地均匀、半径为1的圆形硬币抛掷在一个边长为8的正方形托盘上,已知硬币平放在托盘上且没有掉下去,则该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为()A. B. C. D.3.已知椭圆:的右焦点为,过点的直线交椭圆于,两点,若的中点坐标为,则椭圆的方程为()A. B. C. D.4.已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是A. B. C. D.5.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下零件数(个)2345加工时间(分钟)264954根据上表可得回归方程,则实数的值为()A.37.3 B.38 C.39 D.39.56.在等差数列中,且,则的最大值等于()A.3 B.4 C.6 D.97.某图书出版公司到某中学开展奉献爱心图书捐赠活动,某班级获得了某品牌的图书共4本,其中数学、英语、物理、化学各一本,现将这4本书随机发给该班的甲、乙、丙、丁4个人,每人一本,并请这4个人在得到的赠书之前进行预测,结果如下:甲说:乙或丙得到物理书;乙说:甲或丙得到英语书;丙说:数学书被甲得到;丁说:甲得到物理书.最终结果显示甲、乙、丙、丁4个人的预测均不正确,那么甲、乙、丙、丁4个人得到的书分别是()A.数学、物理、化学、英语 B.物理、英语、数学、化学C.数学、英语、化学、物理 D.化学、英语、数学、物理8.在中,角,,所对的边分别为,,,且,,,,则()A.2 B. C. D.49.已知函数在上可导且满足,则下列一定成立的为A. B.C. D.10.若函数f(x)=x-2+A.-3≤a<32 B.-3≤a<1 C.a≥11.已知x与y之间的一组数据:则y与x的线性回归方程为y=bx+a必过()x0123y1357A.(1.5,4)点 B.(1.5,0)点 C.(1,2)点 D.(2,2)点12.若函数且在上既是奇函数又是增函数,则的图象是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正的边长为,则到三个顶点的距离都为的平面有____________个.14.若关于的方程有两个不相等的实数根,则实数的取值范围是__________.15.已知正六棱柱的底面边长为,侧棱为,则该正六棱柱的体积为_________16.已知等比数列中,,则公比______;______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知三棱柱,平面平面,,,,,分别是,的中点.(1)证明:;(2)求直线与平面所成角的正弦值.18.(12分)如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.19.(12分)统计学中,经常用环比、同比来进行数据比较,环比是指本期统计数据与上期比较,如年月与年月相比,同比是指本期数据与历史同时期比较,如年月与年月相比.环比增长率(本期数上期数)上期数,同比增长率(本期数同期数)同期数.下表是某地区近个月来的消费者信心指数的统计数据:序号时间年月年月年月年月年月年月年月年月消费者信心指数2017年月年月年月年月年月年月年月年月年月求该地区年月消费者信心指数的同比增长率(百分比形式下保留整数);除年月以外,该地区消费者信心指数月环比增长率为负数的有几个月?由以上数据可判断,序号与该地区消费者信心指数具有线性相关关系,写出关于的线性回归方程(,保留位小数),并依此预测该地区年月的消费者信心指数(结果保留位小数,参考数据与公式:,,,,)20.(12分)已知函数,.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,若函数在上有两个不同的零点,求的取值范围.21.(12分)选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若对恒成立,求的取值范围.22.(10分)2019年某地初中毕业升学体育考试规定:考生必须参加长跑.掷实心球.1分钟跳绳三项测试,三项测试各项20分,满分60分.某学校在初三上学期开始时,为掌握全年级学生1分钟跳绳情况,按照男女比例利用分层抽样抽取了100名学生进行测试,其中女生54人,得到下面的频率分布直方图,计分规则如表1:(1)规定:学生1分钟跳绳得分20分为优秀,在抽取的100名学生中,男生跳绳个数大等于185个的有28人,根据已知条件完成表2,并根据这100名学生测试成绩,能否有99%的把握认为学生1分钟跳绳成绩优秀与性别有关?附:参考公式临界值表:(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,全年级恰有2000名学生,所有学生的跳绳个数X服从正态分布N(μ,σ2)(用样本数据的平值和方差估计总体的期望和方差,各组数据用中点值代替)①估计正式测试时,1分钟跳182个以上的人数(结果四舍五入到整数);②若在全年级所有学生中任意选取3人,正式测试时1分钟跳195个以上的人数为ξ,求ξ占的分布列及期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据题意等比数列的公比,由等比数列的性质有,成等比数列,可得答案.【详解】根据题意等比数列的公比.由等比数列的性质有,成等比数列所以有,则,所以,故选:B【点睛】本题考查等比数列的前项和的性质的应用,属于中档题.2、B【解析】分析:求出硬币完全落在托盘上硬币圆心所在区域的面积,求出托盘面积,由测度比是面积比得答案.详解:如图:要使硬币完全落在托盘上,则硬币圆心在托盘内以6为边长的正方形内,硬币在托盘上且没有掉下去,则硬币圆心在托盘内,由测度比为面积比可得,硬币完全落在托盘上的概率为.故选B.点睛:本题考查几何概型概率的求法,正确理解题意是关键,是基础题.3、A【解析】

设,,,,代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得,,利用斜率计算公式可得.于是得到,化为,再利用,即可解得,.进而得到椭圆的方程.【详解】解:设,,,,代入椭圆方程得,相减得,.,,.,化为,又,解得,.椭圆的方程为.故选:.【点睛】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.4、C【解析】分析:构造函数,利用已知条件确定的正负,从而得其单调性.详解:设,则,∵,即,∴当时,,当时,,递增.又是奇函数,∴是偶函数,∴,,∵,∴,即.故选C.点睛:本题考查由导数研究函数的单调性,解题关键是构造新函数,通过研究的单调性和奇偶性,由奇偶性可以把变量值转化到同一单调区间上,从而比较大小.5、C【解析】

求出,代入回归方程,即可得到实数的值。【详解】根据题意可得:,,根据回归方程过中心点可得:,解得:;故答案选C【点睛】本题主要考查线性回归方程中参数的求法,熟练掌握回归方程过中心点是关键,属于基础题。6、B【解析】

先由等差数列的求和公式,得到,再由基本不等式,即可求出结果.【详解】因为在等差数列中,所以,即,又,所以,当且仅当时,的最大值为4.故选B。【点睛】本题主要考查基本不等式求积的最大值,熟记等差数列的求和公式以及基本不等式即可,属于常考题型.7、D【解析】

根据甲说的和丁说的都错误,得到物理书在丁处,然后根据丙说的错误,判断出数学书不在甲处,从而得到答案.【详解】甲说:乙或丙得到物理书;丁说:甲得到物理书.因为甲和丁说的都是错误的,所以物理书不在甲、乙、丙处,故物理书在丁处,排除A、B选项;因为丙说:数学书被甲得到,且丙说的是错误的,所以数学书不在甲处,故排除C项;所以答案选D项.【点睛】本题考查根据命题的否定的实际应用,属于简单题.8、C【解析】

先利用正弦定理解出c,再利用的余弦定理解出b【详解】所以【点睛】本题考查正余弦定理的简单应用,属于基础题.9、A【解析】易知在上恒成立,在上单调递减,又.本题选择C选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.10、A【解析】

将问题转化为曲线gx=x-2+2x-1与直线y=ax没有交点,并将函数y=gx表示为分段函数的形式,并作出该函数的图象,分析直线【详解】因为函数f(x)=x-所以方程x-2即函数g(x)=x-2+如图所示,则h(x)的斜率a应满足-3≤a<32,故选:【点睛】本题考查绝对值函数的零点个数问题,解本题需注意:(1)零点个数问题转化为两个函数的公共点的个数问题;(2)含绝对值的函数一般利用零点分段法表示为分段函数。11、A【解析】由题意:,回归方程过样本中心点,即回归方程过点.本题选择A选项.12、D【解析】

根据题意先得到,,判断其单调性,进而可求出结果.【详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【点睛】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

分类讨论,三个顶点都在平面的同一侧,三个顶点在平面的两侧,一侧一个,另一侧两个.【详解】若此平面与平面平行,这样的平面有2个到三顶点距离为1,若此平面与平面相交,则一定过三角形其中两边的中点,由于三角形边长为,因此如过的中点和的中点的平面,到三顶点距离为1的有两个,这样共有6个,所以所求平面个数为1.故答案为:1.【点睛】本题考查点到平面的距离,由于是三角形的三个顶点到平面的距离相等,因此要分类讨论,即三角形所在平面与所求平面平行和相交两种情形,相交时为保证距离相等,平面必定过三角形两边中点.14、【解析】

关于的方程有两个不相等的实数根,可转化为求有两个不同的解的问题,令,分析的单调性和图像,从而求出c的取值范围.【详解】引入函数,则,易知在上单调递减,在上单调递增,所以.又分析知,当时,;当时,;当时,,所以,所以.【点睛】本题考查利用导数求函数的零点问题,解题的关键是利用导数讨论函数的单调性,此题属于基础题.15、【解析】

先计算出底面正六边形的面积,然后根据棱柱的体积公式,即可求解出正六棱柱的体积.【详解】因为底面是个边长为的正三角形,所以底面积为,所以正六棱柱的体积为:.故答案为:.【点睛】本题考查正棱柱的体积计算,难度较易.棱柱的体积计算公式:(是棱柱的底面积,是棱柱的高).16、24【解析】

根据等比数列通项公式构造方程求解即可.【详解】本题正确结果:;【点睛】本题考查等比数列基本量的求解,关键是熟练掌握等比数列通项公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)建立空间直角坐标系,设,从而确定与的坐标,通过求二者的数量积证明.(2)结合第一问,计算出直线的方向向量和平面的法向量,结合线面角余弦值和诱导公式即可求直线与平面所成角的正弦值.【详解】(1)证明:在底面内作,以点为坐标原点,、、的方向分别为、、轴建立空间直角坐标系,不妨设则,,,由可求得的坐标为利用中点坐标公式可求出,即(2)解:由第一问可知:.设平面的法向量为则,不妨设则,此时设直线与平面所成角为,则即直线与平面所成角的正弦值为.【点睛】本题考查了空间几何中的线线垂直的判定,考查了线面角的求解问题.解答此类问题时,一般情况下根据题意建立适当的空间坐标系,根据已知的垂直、平行、数量关系等条件,求出点的坐标,进而求出方向向量、法向量的坐标.易错点在于对于直线和平面所成角的问题中,不少同学错把求得的直线方向向量和平面法向量的夹角认为是所求角.18、(1)见解析;(2).【解析】

(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19、;个;;.【解析】

根据所给数据求出同比增长率即可;由本期数上期数,结合图表找出结果即可;根据所给数据求出相关系数,求出回归方程,代入的值,求出的预报值即可.【详解】解:该地区年月份消费者信心指数的同比增长率为;由已知环比增长率为负数,即本期数上期数,从表中可以看出,年月、年月、年月、年月、年月共个月的环比增长率为负数.由已知计算得:,,线性回归方程为.当时,,即预测该地区年月份消费者信心指数约为.【点睛】本题考查回归方程问题,考查转化思想,属于中档题.20、(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).【解析】

(Ⅰ)将代入函数的解析式,求出该函数的定义域与导数,解不等式和并与定义域取交集可分别得出该函数的单调递减区间和递增区间;(Ⅱ)求出函数的导数,分析函数在区间上的单调性,由题中条件得出,于此可解出实数的取值范围。【详解】(Ⅰ)函数的定义域为,当时,,,令,即,解得,令,即,解得,∴函数的单调递减区间为,单调递增区间为;(Ⅱ),,由得,,当时,,当时,,∴函数在上单调递减,在上单调递增,∵,,∴函数在上有两个不同的零点,只需,解得,∴的取值范围为.【点睛】本题考查利用导数求函数的单调区间,利用导数研究函数的零点个数问题,解题时常用导数研究函数的单调性、极值与最值,将零点个数转化为函数极值与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论