版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在平面直角坐标系中,质点间隔3分钟先后从点,绕原点按逆时针方向作角速度为弧度/分钟的匀速圆周运动,则与的纵坐标之差第4次达到最大值时,运动的时间为()A.37.5分钟 B.40.5分钟 C.49.5分钟 D.52.5分钟2.命题;命题.若为假命题,为真命题,则实数的取值范围是()A. B.或C.或 D.或3.复数(为虚数单位)的共轭复数是()A. B. C. D.4.若定义域为的偶函数满足,且当时,,则函数在上的最大值为()A.1 B. C. D.-5.复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.设集合,,则A. B. C. D.7.三棱锥的棱长全相等,是中点,则直线与直线所成角的正弦值为()A. B. C. D.8.现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别有以下要求,甲:我不坐座位号为和的座位;乙:我不坐座位号为和的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.那么坐在座位号为的座位上的是()A.甲 B.乙 C.丙 D.丁9.在棱长为的正方体中,如果、分别为和的中点,那么直线与所成角的大小为()A. B. C. D.10.已知函数,若存在,使得有解,则实数的取值范围是()A. B. C. D.11.下列有关统计知识的四个命题正确的是()A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位12.如图,在空间四边形ABCD中,设E,F分别是BC,CD的中点,则+(-)等于A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.向量,,在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量与共线,则________.14.超速行驶已成为马路上最大杀手之一,已知某路段属于限速路段,规定通过该路段的汽车时速不超过60,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图,则违规的汽车大约为___________.15.已知过点的直线交轴于点,抛物线上有一点使,若是抛物线的切线,则直线的方程是___.16.一个正方体的个顶点可以组成__________个非等边三角形.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角的对边分别为,已知,且.(1)求角的大小;(2)若,求的面积.18.(12分)将函数的图象向右平移1个单位得到的图象.(1)若,求函数的值域;(2)若在区间上单调递减,求实数的取值范围.19.(12分)如图所示,椭圆,、,为椭圆的左、右顶点.设为椭圆的左焦点,证明:当且仅当椭圆上的点在椭圆的左、右顶点时,取得最小值与最大值.若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆的标准方程.若直线与中所述椭圆相交于、两点(、不是左、右顶点),且满足,求证:直线过定点,并求出该定点的坐标.20.(12分)为调查某小区居民的“幸福度”.现从所有居民中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶),若幸福度分数不低于8.5分,则称该人的幸福度为“幸福”.(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;(2)以这16人的样本数据来估计整个小区的总体数据,若从该小区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望和方差.21.(12分)已知关于的不等式的解集为(1)求实数的值;(2)求的最大值.22.(10分)知数列的前项和.(1)求的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
分析:由题意可得:yN=,yM=,计算yM﹣yN=sin,即可得出.详解:由题意可得:yN=,yM=∴yM﹣yN=yM﹣yN=sin,令sin=1,解得:=2kπ+,x=12k+,k=0,1,2,1.∴M与N的纵坐标之差第4次达到最大值时,N运动的时间=1×12+=17.5(分钟).故选A.点睛:本题考查了三角函数的图象与性质、和差公式、数形结合方法,考查了推理能力与计算能力,属于中档题.也查到了三角函数的定义的应用,三角函数的定义指的是单位圆上的点坐标和这一点的旋转角之间的关系.2、B【解析】
首先解出两个命题的不等式,由为假命题,为真命题得命题和命题一真一假.【详解】命题,命题.因为为假命题,为真命题.所以命题和命题一真一假,所以或,选择B【点睛】本题主要考查了简易逻辑的问题,其中涉及到了不等式以及命题真假的判断问题,属于基础题.3、B【解析】
根据复数除法运算,化简复数,再根据共轭复数概念得结果【详解】,故的共轭复数.故选B.【点睛】本题考查复数除法运算以及共轭复数概念,考查基本分析求解能力,属基础题.4、A【解析】
根据已知的偶函数以及f(2﹣x)=﹣f(x)可以求得函数f(x)在[﹣2,2]上的解析式,进而得到g(x)在[﹣2,2]上的解析式,对g(x)进行求导可知g(x)的增减性,通过增减性求得最大值【详解】根据,得函数关于点(1,0)对称,且当时,,则时,,所以当时,;又函数为偶函数,所以当时,则,可知当,故在[-2,0)上单调递增,时,在[0,2]上单调递减,故.故选:A【点睛】本题考查函数的基本性质:对称性,奇偶性,周期性.同时利用导函数的性质研究了函数在给定区间内的最值问题,是中档题5、A【解析】
化简求得复数为,然后根据复数的几何意义,即可得到本题答案.【详解】因为,所以在复平面内对应的点为,位于第一象限.故选:A【点睛】本题主要考查复数的四则运算和复数的几何意义,属基础题.6、C【解析】由,得:∴;∵,∴∴故选C7、C【解析】分析:取中点,连接,由三角形中位线定理可得,直线与所成的角即为直线与直线所成角,利用余弦定理及平方关系可得结果.详解:如图,取中点,连接,分别为的中点,则为三角形的中位线,,直线与所成的角即为直线与直线所成角,三棱锥的棱长全相等,设棱长为,则,在等边三角形中,为的中点,为边上的高,,同理可得,在三角形中,,,直线与直线所成角的正弦值为,故选C.点睛:本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角先要利用三角形中位线定理以及平行四边形找到,异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.8、C【解析】
对甲分别坐座位号为3或4分类推理即可判断。【详解】当甲坐座位号为3时,因为乙不坐座位号为1和4的座位所以乙只能坐座位号为2,这时只剩下座位号为1和4又丙的要求和乙一样,矛盾,故甲不能坐座位号3.当甲坐座位号为4时,因为乙不坐座位号为1和4的座位,丙的要求和乙一样:所以丁只能坐座位号1,又如果乙不坐座位号为2的座位,丁就不坐座位号为1的座位.所以乙只能坐座位号2,这时只剩下座位号3给丙。所以坐在座位号为3的座位上的是丙.故选:C【点睛】本题主要考查了逻辑推理能力,考查了分类思想,属于中档题。9、B【解析】
作出图形,取的中点,连接、,证明四边形为平行四边形,计算出的三边边长,然后利用余弦定理计算出,即可得出异面直线与所成角的大小.【详解】如下图所示:取的中点,连接、,、分别为、的中点,则,且,在正方体中,,为的中点,且,则,所以,四边形为平行四边形,,则异面直线与所成的角为或其补角.在中,,,.由余弦定理得.因此,异面直线与所成角的大小为.故选B.【点睛】本题考查异面直线所成角的计算,一般利用定义法或空间向量法计算,考查计算能力,属于中等题.10、B【解析】
先将化为,再令,则问题转化为:,然后通过导数求得的最大值代入可得.【详解】若存在,使得有解,即存在,使得,令,则问题转化为:,因为,当时,;当时,,所以函数在上递增,在上递减,所以,所以.故选B.【点睛】本题考查了不等式能成立问题,属中档题.11、A【解析】分析:利用“卡方”的意义、相关指数的意义及回归分析的适用范围,逐一分析四个答案的真假,可得答案.详解:A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切,正确;B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差,错误对分类变量与的随机变量的观测值来说,越大,“与有关系”可信程度越大;故B错误;C.线性回归方程对应的直线至少经过其样本数据点中的一个点,错误,回归直线可能不经过其样本数据点中的任何一个点;D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位,错误,由回归方程可知变量每增加一个单位时,变量平均增加个单位.故选A.点睛:本题考查回归分析的意义以及注意的问题.是对回归分析的思想、方法小结.要结合实例进行掌握.12、C【解析】
由向量的线性运算的法则计算.【详解】-=,,∴+(-).故选C.【点睛】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
建立平面直角坐标系,从而得到的坐标,这样即可得出的坐标,根据与共线,可求出,从而求出的坐标,即得解.【详解】建立如图所示平面直角坐标系,则:;与共线故答案为:【点睛】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.14、800【解析】
先通过频率分布直方图,得出速度大于对应矩形的面积和,再乘以可得出结果.【详解】由图象可知,速度大于的汽车的频率为,因此,违规的汽车数为,故答案为:.【点睛】本题考查频率分布直方图的应用,计算频率时要找出符合条件的矩形的面积之和,考查计算能力,属于基础题.15、或.【解析】分析:由题设,求导得到直线然后分和两种情况讨论即可得到直线的方程.详解:由题设,求导即,则直线当时,验证符合题意,此时,故,当时,,,或(重合,舍去)此时,故点睛:本题考查曲线的切线方程的求法,垂直关系的斜率表示等,属基础题.16、48【解析】分析:从正方体的个顶点中人取三个点共有种取法,其中等边三角形共有个,作差即可得结果.详解:从正方体的个顶点中人取三个点共有种取法,其中等边三角形共有个,所以非等边三角形共有个,故答案为.点睛:本题主要考查组合数的应用,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】
由已知及正弦定理可得,结合范围,利用特殊角的三角函数值可求A的值.
由利用同角三角函数基本关系式可得cosA,由余弦定理可求b的值,进而根据三角形面积公式即可计算得解.【详解】(1)因为,所以,所以,即.因为所以,或.(2)因为,所以,所以,解得.所以.【点睛】本题主要考查了正弦定理,特殊角的三角函数值,同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于中档题.18、(1)(2)【解析】试题分析:(1)整理函数的解析式,令,换元后讨论可得函数的值域是;(2)结合函数的单调性得到关于实数a的不等式组,求解不等式组可得实数的取值范围是.试题解析:(1)令,,则,∴∴,即的值域为.(2)∵,∴在和上为减函数又在上是减函数,∴在上恒正,且在上是增函数,即,∴19、见解析;;见解析,.【解析】
设点的坐标为,令,由点在椭圆上,得,则,代入式子,利用二次函数的性质和的取值范围,求出函数的最值以及对应的的取值,即可求证;由已知与,得,,解得,,再由求出,进而求出椭圆的标准方程;假设存在满足条件的直线,设,,联立直线方程和椭圆方程进行整理,化简出一元二次方程,再利用韦达定理列出方程组,根据题意得,代入列出关于的方程,进行化简求解.【详解】设点的坐标为,令.由点在椭圆上,得,则,代入,得,其对称轴方程为,由题意,知恒成立,在区间上单调递增.当且仅当椭圆上的点在椭圆的左、右顶点时,取得最小值与最大值.由已知与,得,,,..椭圆的标准方程为.如图所示,设,,联立,得,则则椭圆的右顶点为,,,,即..,解得,,且均满足.当时,l的方程为直线过定点,与已知矛盾.当时,l的方程为直线过定点,满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人民币存款合同协议
- 工程采购合同协议书格式规范
- 知识产权担保合同协议范本
- 软件安全服务合同范本
- 皮瓣移植患者的护理
- 登机桥操作员培训
- 项目施工合同不规范排查报告
- 2013年江西省中考满分作文《带着自信出发》2
- 报名了又转学了申请退款表
- 北师大版七年级上册数学第一次月考试卷及答案
- 城市轨道交通运营管理【共30张课件】
- 学生退学情况说明
- 钢结构设计智慧树知到期末考试答案章节答案2024年山东建筑大学
- DB5334 T 12.5-2024《地理标志证明商标 香格里拉藏香猪》的第5部分疾病防治
- 化学机械浆与半化学机械浆
- CJJ122-2017 游泳池给水排水工程技术规程
- 睡眠中心宣传方案
- 2024春期国开电大专科《建筑制图基础》在线形考(形考性考核作业一至四)试题及答案
- 论《国际货物销售合同公约》的适用问题
- 大型养路机械国内发展
- 校服供货服务方案
评论
0/150
提交评论