2023届上海市交大嘉定数学高二第二学期期末教学质量检测模拟试题含解析_第1页
2023届上海市交大嘉定数学高二第二学期期末教学质量检测模拟试题含解析_第2页
2023届上海市交大嘉定数学高二第二学期期末教学质量检测模拟试题含解析_第3页
2023届上海市交大嘉定数学高二第二学期期末教学质量检测模拟试题含解析_第4页
2023届上海市交大嘉定数学高二第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数是上的奇函数,且的图象关于对称,当时,,则的值为A. B. C.0 D.12.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人3.已知向量满足,点在线段上,且的最小值为,则的最小值为()A. B. C. D.24.若的展开式中含有项的系数为8,则()A.2 B. C. D.5.在正方体中,E是棱的中点,点M,N分别是线段与线段上的动点,当点M,N之间的距离最小时,异面直线与所成角的余弦值为()A. B. C.D6.六位同学站成一排照相,若要求同学甲站在同学乙的左边,则不同的站法有()A.种 B.种 C.种 D.种7.已知函数,当时,不等式恒成立,则实数的取值范围为()A. B. C. D.8.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x34y12对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是A. B. C. D.9.盒中有只螺丝钉,其中有只是不合格的,现从盒中随机地取出只,那么恰有只不合格的概率是()A. B. C. D.10.曲线在点处的切线的斜率为()A. B. C. D.11.如图所示,程序框图输出的某一实数中,若,则菱形框中应填入()A. B. C. D.12.已知,的最小值为,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中是虚数单位,复数满足,则复数的模等于__________.14.如图,把数列中的所有项按照从小到大,从左到右的顺序写成如图所示的数表,且第行有个数.若第行从左边起的第个数记为,则2019这个数可记为______.15.设,关于的不等式在区间上恒成立,其中,是与无关的实数,且,的最小值为1.则的最小值______.16.在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P到直线x+y=0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)若,求函数的单调递增区间;(2)若,且函数在区间上单调递减,求的值.18.(12分)已知f(x)=ln(1)若a=1,求函数H(x)=f(x)-g(x)的单调区间;(2)若函数H(x)=f(x)-g(x)在其定义域上不单调,求实数a的取值范围;19.(12分)男生4人和女生3人排成一排拍照留念.(1)有多少种不同的排法(结果用数值表示)?(2)要求两端都不排女生,有多少种不同的排法(结果用数值表示)?(3)求甲乙两人相邻的概率.(结果用最简分数表示)20.(12分)在极坐标系中,已知直线l的极坐标方程为.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系,曲线C的参数方程为(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点,直线l和曲线C相交于,两点,求.21.(12分)如图,在三棱柱ABC−中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==1.(1)求证:AC⊥平面BEF;(1)求二面角B−CD−C1的余弦值;(3)证明:直线FG与平面BCD相交.22.(10分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

先根据函数的图象关于对称且是上的奇函数,可求出函数的最小正周期,再由时,,即可求出结果.【详解】根据题意,函数的图象关于对称,则,又由函数是上的奇函数,则,则有,变形可得,即函数是周期为4的周期函数,则,又由函数是上的奇函数,则,故.故选C【点睛】本题主要考查函数的基本性质,周期性、奇偶性、对称性等,熟记相关性质即可求解,属于常考题型.2、B【解析】

根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.3、D【解析】

依据题目条件,首先可以判断出点的位置,然后,根据向量模的计算公式,求出的代数式,由函数知识即可求出最值.【详解】由于,说明点在的垂直平分线上,当是的中点时,取最小值,最小值为,此时与的夹角为,与的夹角为,∴与的夹角为,的最小值是4,即的最小值是2.故选D.【点睛】本题主要考查了平面向量有关知识,重点是利用数量积求向量的模.4、A【解析】展开式中含有项的系数,,故选A.5、A【解析】

以A为坐标原点,以,,为x,y,z轴正向建系,设,,,,,设,得,求出取最小值时值,然后求的夹角的余弦值.【详解】以A为坐标原点,以,,为x,y,z轴正向建系,设,,,,,设,由得,则,当即,时,取最小值.此时,,令.得.故选:A.【点睛】本题考查求异面直线所成的角,解题关键求得的取最小值时的位置.解题方法是建立空间直角坐标系,用空间向量法表示距离、求角.6、C【解析】

先作分类,甲在左边第一位,有;甲在左边第二位,有;甲在左边第三位,有;甲在左边第四位,有;甲在左边第五位,有;然后直接相加求解即可【详解】甲在左边第一位,有;甲在左边第二位,有;甲在左边第三位,有;甲在左边第四位,有甲在左边第五位,有;不同的站法有种,选C.【点睛】本题考查排列问题,属于基础题7、A【解析】

令,由可知在上单调递增,从而可得在上恒成立;通过分离变量可得,令,利用导数可求得,从而可得,解不等式求得结果.【详解】由且得:令,可知在上单调递增在上恒成立,即:令,则时,,单调递减;时,,单调递增,解得:本题正确选项:【点睛】本题考查根据函数的单调性求解参数范围的问题,关键是能够将已知关系式变形为符合单调性的形式,从而通过构造函数将问题转化为导数大于等于零恒成立的问题;解决恒成立问题常用的方法为分离变量,将问题转化为参数与函数最值之间的大小关系比较的问题,属于常考题型.8、D【解析】

根据的数值变化规律推测二者之间的关系,最贴切的是二次关系.【详解】根据实验数据可以得出,近似增加一个单位时,的增量近似为2.5,3.5,4.5,6,比较接近,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.9、A【解析】分析:利用古典概型求恰有只不合格的概率.详解:由古典概型公式得故答案为:A.点睛:(1)本题主要考查古典概型,意在考查学生对该知识的掌握水平.(2)古典概型的解题步骤:①求出试验的总的基本事件数;②求出事件A所包含的基本事件数;③代公式=.10、B【解析】

求导后代入即可得出答案。【详解】故选B【点睛】本题考查利用导函数求切线斜率。属于基础题。11、B【解析】分析:由已知中的程序语句可知,该程序功能是利用循环结构计算并输出实数对,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案.详解:由题意,当时,第1次循环,不满足条件,;第2次循环,不满足条件,;第3次循环,不满足条件,;第4次循环,不满足条件,;第5次循环,不满足条件,,此时输出结果,所以判断框填写的条件应为,故选B.点睛:本题主要考查了循环结构的程序框图的判断条件的添加问题,其中极大中应模拟程序框图的运行过程,把握程序框图的运算功能是解答的关键,着重考查了推理与运算能力.12、C【解析】

如图所示:在直角坐标系中,取点,,,得到的轨迹方程为,故,得到答案.【详解】如图所示:在直角坐标系中,取点,,,则,,满足,设,过点作垂直于所在的直线与,则的最小值为,即,根据抛物线的定义知的轨迹方程为:.取,故,即,当垂直于准线时等号成立.故选:.【点睛】本题考查了向量和抛物线的综合应用,根据抛物线的定义得到的轨迹方程是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

可设出复数z,通过复数相等建立方程组,从而求得复数的模.【详解】由题意可设,由于,所以,因此,解得,因此复数的模为:.【点睛】本题主要考查复数的四则运算,相等的条件,比较基础.14、【解析】

前行用掉个自然数,由可判断2019所在行,即可确定其位置.【详解】因为前行用掉个自然数,而,

即2019在11行中,又第11行的第1个数为,

则2019为第11行的第个数,即第996个数,

即,,

故答案为:.【点睛】本题主要考查了归纳推理,等比数列求和,属于中档题.15、【解析】

化简,结合单调性及题意计算出,的表达式,由的最小值为1计算出结果【详解】因为,所以在上单调递增,又关于的不等式在上恒成立,所以,,因为的最小为1,所以,即,所以,当且仅当,即时取“”,即的最小值为.【点睛】本题考查了计算最值问题,题目较为复杂,理清题意,结合函数的单调性求出最值,运用基本不等式计算出结果,紧扣题意是解题关键,考查了学生转化能力16、4.【解析】

将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线x+y=0平移到与曲线y=x+4x相切位置时,切点Q即为点P到直线x+y=0由y'=1-4x2即切点Q(2则切点Q到直线x+y=0的距离为2+3故答案为:4.【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为(2)【解析】

(1)求导分析函数单调性即可.(2)由题可知在区间上恒成立可得,即可得再结合即可.【详解】解:(1)由,得函数的单调递增区间为.(2)若函数在区间上单调递减,则,则,因为,所以,又,所以.【点睛】本题主要考查了利用导数求解函数的单调区间问题,同时也考查了利用函数的单调区间求解参数范围的问题,需要利用恒成立问题求最值,属于基础题.18、(1)H(x)单增区间为(0,1),单减区间为(1,+∞)(2)a>0【解析】

(1)求出导函数H'(x),由H'(x)>0确定增区间,由H'(x)<0确定减区间;(2)H'(x)在定义域内有零点,且在零点两侧符号相反.由此可求参数a的取值范围.【详解】(1)定义域x∈(0,+∞),∵a=1,H(x)=f(x)-g(x)=∴∴H(x)单增区间为(0,1),单减区间为(1,+∞)(2)∵H(x)=∵H(x)在(0,+∞)上不单调.∴H'(x)=0H'(x)=0得∴2a>0即a>0【点睛】本题考查用导数研究函数的单调性.函数f(x)的导函数是f'(x),一般由f'(x)>0确定增区间,由f'(x)<0确定减区间,若f'(x)在区间(a,b)内有零点,且在零点两侧符号相反,则f(x)在(a,b)上不单调.19、(1)5040;(2)1440;(3).【解析】

(1)根据排列的定义及排列数公式,即可求得总的排列方法.(2)根据分步计数原理,先把两端的位置安排男生,再安排中间5个位置即可.(3)根据捆绑法计算甲乙两人相邻的排列方法,除以总数即可求得甲乙两人相邻的概率.【详解】(1)男生4人和女生3人排成一排则总的安排方法为种(2)因为两端不安排女生,所以先把两端安排男生,共有种剩余5人安排在中间位置,总的安排方法为种根据分步计数原理可知两端不安排女生的方法共有种(3)甲乙两人相邻,两个人的排列为把甲乙看成一个整体,和剩余5人一起排列,总的方法为因为男生4人和女生3人排成一排总的安排方法为种所以甲乙两人相邻的概率为【点睛】本题考查了排列组合的综合应用,对特殊位置要求及相邻问题的求法,属于基础题.20、(1),;(2)44【解析】分析:(1)首先将直线的极坐标方程展开后,利用极坐标和直角坐标的转化公式,可求得直线的直角坐标方程.利用代入消元法消去可求得曲线的普通方程.(2)利用直线参数的几何意义,借助根与系数关系,可求得的值.详解:(1)由得,即,∴的直角坐标方程,由,得,代入得,即,所以的普通方程:;(2)在上,的参数方程为(为参数),将的参数方程代入得:,即,∴,∴.点睛:本小题主要考查极坐标和直角坐标相互转化,考查参数方程和普通方程互划,考查利用直线参数的几何意义解题.属于基础题.21、(2)见解析(2);(3)见解析.【解析】

分析:(2)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线FG方向向量数量积不为零,可得结论.详解:(Ⅰ)在三棱柱ABC-A2B2C2中,∵CC2⊥平面ABC,∴四边形A2ACC2为矩形.又E,F分别为AC,A2C2的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC2.又CC2⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-2,0,0),D(2,0,2),F(0,0,2),G(0,2,2).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-2,c=-4,∴平面BCD的法向量,又∵平面CDC2的法向量为,∴.由图可得二面角B-CD-C2为钝角,所以二面角B-CD-C2的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,2),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(2)证明线面、面面平行,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论