2023届安徽省安庆二中、天成中学数学高二第二学期期末监测试题含解析_第1页
2023届安徽省安庆二中、天成中学数学高二第二学期期末监测试题含解析_第2页
2023届安徽省安庆二中、天成中学数学高二第二学期期末监测试题含解析_第3页
2023届安徽省安庆二中、天成中学数学高二第二学期期末监测试题含解析_第4页
2023届安徽省安庆二中、天成中学数学高二第二学期期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量满足条件~,且,那么与的值分别为A. B. C. D.2.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.3.已知集合,集合满足,则集合的个数为A. B. C. D.4.设函数f(x)=-,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为()A.{0} B.{-1,0}C.{-1,0,1} D.{-2,0}5.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数A. B.2 C.3 D.2或6.《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪裹、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”已知上造分得只鹿,则大夫所得鹿数为()A.1只 B.只 C.只 D.2只7.如图,,分别是边长为4的等边的中线,圆是的内切圆,线段与圆交于点.在中随机取一点,则此点取自图中阴影部分的概率是()A. B. C. D.8.若向量,满足,与的夹角为,则等于()A. B. C.4 D.129.复数z满足z=2i1-iA.1-i B.1+2i C.1+i D.-1-i10.过点作曲线的切线,则切线方程为()A. B.C. D.11.已知向量满足,且,则的夹角为()A. B. C. D.12.设非零向量,,满足,,则与的夹角为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在棱长为2的正方体中,,分别是,的中点,那么异面直线和所成角的余弦值等于________________.14.已知变量,满足约束条件,设的最大值和最小值分别是和,则__________.15.在极坐标系中,点到圆的圆心的距离为__________.16.已知向量,若则实数的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程.已知直线(为参数),曲线(为参数).(1)设与相交于两点,求;(2)曲线为(为参数),点是曲线上的一个动点,求它到直线的距离的最小值.18.(12分)国内某知名大学有男生14111人,女生11111人,该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取121人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3]).男生平均每天运动时间分布情况:女生平均每天运动时间分布情况:(1)请根据样本估算该校男生平均每天运动的时间(结果精确到1.1);(2)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.①请根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过1.15的前提下认为“是否为‘运动达人’与性别有关?”参考公式:k2=n参考数据:P(1.111.151.1251.1111.1151.111k2.7163.8415.1246.6357.87911.82819.(12分)已知曲线的参数方程为,以原点为极点,以轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出曲线的极坐标方程和直线的直角坐标方程;(2)若射线与曲线交于两点,与直线交于点,射线与曲线交于两点,求的面积.20.(12分)已知数列的前项和为,且,.(Ⅰ)试计算,,,,并猜想的表达式;(Ⅱ)求出的表达式,并证明(Ⅰ)中你的猜想.21.(12分)已知函数.(1)当时,求函数在上的最大值;(2)令,若在区间上为单调递增函数,求的取值范围;(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件.证明:.22.(10分)(1)集合,或,对于任意,定义,对任意,定义,记为集合的元素个数,求的值;(2)在等差数列和等比数列中,,,是否存在正整数,使得数列的所有项都在数列中,若存在,求出所有的,若不存在,说明理由;(3)已知当时,有,根据此信息,若对任意,都有,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据二项分布的均值与方差公式列方程组解出n与p的值.【详解】∵X~B(n,p)且,∴,解得n=15,p故选C.【点睛】本题考查了二项分布的均值与方差公式的应用,考查了运算能力,属于基础题.2、B【解析】

分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.3、D【解析】分析:根据题意得到为的子集,确定出满足条件的集合的个数即可详解:集合,集合满足,则满足条件的集合的个数是故选点睛:本题是基础题,考查了集合的子集,当集合中有个元素时,有个子集。4、B【解析】

依题意,由于,所以.当时,,当时,,故的值域为.故选B.【点睛】本小题主要考查指数函数的值域,考查新定义函数的意义,考查了分类讨论的数学思想方法.属于中档题.5、A【解析】

根据幂函数的定义,求出m的值,代入判断即可.【详解】函数是幂函数,,解得:或,时,,其图象与两坐标轴有交点不合题意,时,,其图象与两坐标轴都没有交点,符合题意,故,故选A.【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题.6、C【解析】

设爵次高低分配得到的猎物数依次成等差数列{an},则,由前5项和为5求得,进一步求得d,则答案可求.【详解】设爵次高低分配得到的猎物数依次成等差数列{an},则,则,∴1,则,∴.∴大夫所得鹿数为只.故选:C.【点睛】本题考查等差数列的通项公式,考查等差数列的性质,属于基础题.7、A【解析】

利用等边三角形中心的性质,求得内切圆的半径和阴影部分面积,再根据几何概型计算公式计算出所求的概率.【详解】在中,,,因为,所以,即圆的半径为,由此可得图中阴影部分的面积等于,的面积为,故所求概率.故选A.【点睛】本题考查几何概型问题,考查数据处理能力和应用意识.属于中档题.8、B【解析】

将平方后再开方去计算模长,注意使用数量积公式.【详解】因为,所以,故选:B.【点睛】本题考查向量的模长计算,难度一般.对于计算这种形式的模长,可通过先平方再开方的方法去计算模长.9、D【解析】

直接利用复数代数形式的乘除运算化简得答案.【详解】z=2i1-i=2i(1+i)【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10、C【解析】

设出切点坐标求出原函数的导函数,得到函数在时的导数值,即切线的斜率,然后由直线方程的点斜式得切线方程,代入已知点的坐标后求出切点的坐标,则切线方程可求.【详解】由,得,

设切点为

则,

∴切线方程为,

∵切线过点,

∴−ex0=ex0(1−x0),

解得:.

∴切线方程为,整理得:.故选C..【点睛】本题考查了利用导数研究过曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.11、C【解析】

设的夹角为,两边平方化简即得解.【详解】设的夹角为,两边平方,得,即,又,所以,则,所以.故选C【点睛】本题主要考查平面向量的数量积的计算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.12、B【解析】

由,且,可得,展开并结合向量的数量积公式,可求出的值,进而求出夹角.【详解】由,且,得,则,即,故,则,故.又,所以.故选:B【点睛】本题考查向量夹角的求法,考查向量的数量积公式的应用,考查学生的计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】以AD,DC,DD1建立空间直角坐标系,则:得直线和所成角的余弦值等于14、【解析】

在平面直角坐标系内,画出不等式组所表示的平面区域,可以发现变量,都是正数,故令,这样根据的几何意义,可以求出的取值范围,利用表示出,利用函数的性质,可以求出的最值,最后计算出的值.【详解】在平面直角坐标系内,画出不等式组所表示的平面区域,如下图所示:从图中可知:变量,都是正数,令,它表示不等式组所表示的平面区域内的点与原点的连线的斜率,解方程组:,可得点,解方程组:,可得点,所以有,因此,,,故.【点睛】本题考查了不等式所表示的平面区域,考查了斜率模型,考查了数形结合思想.15、【解析】分析:先根据圆的极坐标方程转化成直角坐标系方程,求得圆心坐标,把点转化成直角坐标,最后利用两点间的距离公式求得答案.详解:,,,即,圆心为,点的直角坐标为,.故答案为:.点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.16、【解析】

由两向量垂直得数量积为0,再代入坐标运算可求得k.【详解】由题意可得,代入坐标可得,解得。填。【点睛】本题考查用数量积表示两向量垂直及空间向量的坐标运算。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2).【解析】分析:(1)由题意,,求得直线的普通方程,联立方程组,求得两点的坐标,即可求得的长;(2)根据曲线的方程,设点的坐标是,利用点到直线的距离公式,求得点到直线的距离,再利用三角函数的性质,即可求解结果.详解:(1)直线的普通方程为,的普通方程为.联立方程组,解得与的交点为,则.………5分(2)曲线为(为参数),故点的坐标是,从而点到直线的距离是,由此当时,取得最小值,且最小值为.…10分点睛:本题主要考查了参数方程与普通方程的互化,以及曲线的参数方程的应用,把直线和曲线的参数方程转化为普通方程,利用点到直线的距离公式求解是解答的关键,着重考查了推理与运算能力.18、(1)1.5;(2)①4111;②在犯错误的概率不超过1.15的前提下不能认为“是否为‘运动达人’与性别有关”.【解析】试题分析:(1)由分层抽样计算得男生抽70人,女生抽50人,故x=5,y=2,由此求得男生平均运动事件为1.5小时;(2)计算k=120(15×45-5×55)2试题解析:(1)由分层抽样得:男生抽取的人数为120×1400014000+10000=70故x=5,y=2,则该校男生平均每天运动时间为:0.25×2+0.75×12+1.25×23+1.75×18+2.25×10+2.75×5故该校男生平均每天运动的时间约为1.5小时;(2)①样本中“运动达人”所占比例是20120=1②由表可知:故K2的观测值故在犯错误的概率不超过1.15的前提下不能认为“是否为‘运动达人’与性别有关”考点:1.频率分布直方图;2.独立性检验.19、(1);(2)【解析】

(1)首先根据曲线的参数方程先化为直角坐标方程,再把直接直角坐标方程化为极坐标方程.根据即可把直线化为直角坐标方程.(2)把射线带入曲线和直线的极坐标方程得出点的坐标,把射线带入曲线的极坐标得出点的坐标.根据即可求出面积.【详解】(1)因为曲线的参数方程为所以所以曲线的极坐标方程为:又直线的极坐标方程为所以直线的直角坐标系方程为综上所述:(2)由(1)知曲线的极坐标方程为所以联立射线与曲线及直线的极坐标方程可得所以联立射线与曲线的极坐标方程可得所以所以【点睛】本题主要考查了参数方程、直角坐标方程、极坐标方程直接的互化,主要掌握.属于基础题.20、(Ⅰ)答案见解析;(Ⅱ),证明见解析.【解析】分析:(1)利用公式,将已知转换成关于的递推公式,计算,,,,在通过分子和分母的规律猜想出.(2)根据,结合通项公式的累乘法求出.再运用求和证明(1)的猜想.详解:(Ⅰ)由,得,,,,猜想.(Ⅱ)证明:因为①,所以②,①-②得,所以.化简得,所以,,,…,,把上面各式相乘得,所以,,.点睛:数列问题注意两个方面的问题:(1)的特殊性;(2)时,①消去,如,可以计算;②消去,如,可以计算.21、(1)-1;(2);(3)参考解析【解析】试题分析:(1),可知在[,1]是增函数,在[1,2]是减函数,所以最大值为f(1).(2)在区间上为单调递增函数,即在上恒成立.,利用分离参数在上恒成立,即求的最大值.(3)有两个实根,,两式相减,又,.要证:,只需证:,令可证.试题解析:(1)函数在[,1]是增函数,在[1,2]是减函数,所以.(2)因为,所以,因为在区间单调递增函数,所以在(0,3)恒成立,有=,()综上:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论