




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年北京密云县高岭中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,,则M∩N=(
)A. B.(0,6) C.[0,6) D.[3,6)参考答案:C【分析】先求出集合M,由此能求出M∩N.【详解】则故选:C【点睛】本题考查交集的求法,考查交集定义、函数性质等基础知识,考查运算求解能力,是基础题.2.已知集合,,则=A、
B、
C、
D、参考答案:B3.函数有极值的充分但不必要条件是A.
B.
C.
D.参考答案:A4.若的展开式中各项系数之和为125,则展开式中的常数项为A-27
B-48
C27
D
48
参考答案:D5.给出一个命题p:若a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个小于零.在用反证法证明p时,应该假设(
)A.a,b,c,d中至少有一个正数
B.a,b,c,d全为正数C.a,b,c,d全都大于或等于0
D.a,b,c,d中至多有一个负数参考答案:C6.在中,,,,点在直线上,
则的值(
)A.等于3
B.等于6
C.等于9
D.不能确定参考答案:C略7.直线的倾斜角是(
)。A
B
C
D
参考答案:正解:D。由题意得:κ=
在[0,π]内正切值为κ的角唯一
倾斜角为误解:倾斜角与题中显示的角混为一谈。
8.设A为圆(x﹣1)2+y2=0上的动点,PA是圆的切线且|PA|=1,则P点的轨迹方程()A.(x﹣1)2+y2=4 B.(x﹣1)2+y2=2 C.y2=2x D.y2=﹣2x参考答案:B【考点】轨迹方程.【分析】结合题设条件作出图形,观察图形知图可知圆心(1,0)到P点距离为,所以P在以(1,0)为圆心,以为半径的圆上,由此能求出其轨迹方程.【解答】解:作图可知圆心(1,0)到P点距离为,所以P在以(1,0)为圆心,以为半径的圆上,其轨迹方程为(x﹣1)2+y2=2.故选B.【点评】本题考查轨迹方程,结合图形进行求解,事半功倍.9.在中,“”是“”的(
)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:C10.已知第一象限内的点M既在双曲线C1:﹣=1(a>0,b>0)上,又在抛物线C2:y2=2px上,设C1的左,右焦点分别为F1、F2,若C2的焦点为F2,且△MF1F2是以MF1为底边的等腰三角形,则双曲线的离心率为()A. B. C.1+ D.2+参考答案:C【考点】双曲线的简单性质.【分析】根据条件得到抛物线和双曲线的焦点相同,根据双曲线和抛物线的定义得到△MF1F2为等腰直角三角形,利用定义建立方程进行求解即可.【解答】解:∵设C1的左,右焦点分别为F1、F2,若C2的焦点为F2,∴抛物线的准线方程为x=﹣c,若△MF1F2是以MF1为底边的等腰三角形,由于点M也在抛物线上,∴过M作MA垂直准线x=﹣c则MA=MF2=F1F2,则四边形AMF2F1为正方形,则△MF1F2为等腰直角三角形,则MF2=F1F2=2c,MF1=MF2=2c,∵MF1﹣MF2=2a,∴2c﹣2c=2a,则(﹣1)c=a,则离心率e===1+,故选:C【点评】本题主要考查双曲线离心率的计算,根据双曲线和抛物线的定义得到△MF1F2为等腰直角三角形是解决本题的关键.考查学生的转化和推理能力.二、填空题:本大题共7小题,每小题4分,共28分11.设i为虚数单位,则_____.参考答案:1.解:12.lnx的减区间为________.参考答案:(0,1)13.________________.参考答案:14.若函数f(x)是偶函数,且在[0,+∞)上是增函数,若,则满足的实数x的取值范围是__________.参考答案:【分析】根据偶函数性质得出在上是减函数,由此可得不等式.【详解】∵是偶函数,且在上是增函数,,∴在上减函数,.又,∴,解得且.故答案为.【点睛】本题考查函数的奇偶性与单调性,由奇偶性和单调性结合起来解函数不等式,这种问题一类针对偶函数,一类针对奇函数,它们有固定的解题格式.如偶函数在上是增函数,可转化为,奇函数在上是增函数,首先把不等式转化为再转化为.15.曲线y=x3在点(1,1)切线方程为
.参考答案:3x﹣y﹣2=0【考点】6H:利用导数研究曲线上某点切线方程.【分析】先求出函数y=x3的导函数,然后求出在x=1处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可.【解答】解:y'=3x2y'|x=1=3,切点为(1,1)∴曲线y=x3在点(1,1)切线方程为3x﹣y﹣2=0故答案为:3x﹣y﹣2=016.正方形边长为12,平面ABCD,PA=12,则P到正方形对角线BD所在直线的距离为_____________;参考答案:17.过原点作曲线的切线,则切线斜率是
;参考答案:e设切点为,则在此切点处的切线方程为,因为过原点,所以,所以切线的斜率为。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,圆锥顶点为P.底面圆心为,其母线与底面所成的角为22.5°.和是底面圆上的两条平行的弦,轴与平面所成的角为60°.(Ⅰ)证明:平面与平面的交线平行于底面;(Ⅱ)求.参考答案:(Ⅰ)
.所以,.(Ⅱ)...法二:19.(本小题满分14分)已知z∈C,和都是实数.(1)求复数;(2)若复数在复平面上对应的点在第四象限,求实数的取值范围.参考答案:解:(1)设,……1分
则,
,………………3分
∵和都是实数,
∴,解得,…………6分
∴.
…………………7分
(2)由(1)知,
∴,………………8分
∵在复平面上对应的点在第四象限,
∴,
…………………9分
即,∴,
………………12分
∴,即实数的取值范围是.
………14分略20.(本小题满分12分)甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是,甲、乙、丙三人都能通过测试的概率是,甲、乙、丙三人都不能通过测试的概率是,且乙通过测试的概率比丙大.(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;(Ⅱ)求测试结束后通过的人数的数学期望.参考答案:解(Ⅰ)设乙、丙两人各自通过测试的概率分别是、依题意得:
即
或
(舍去)┅┅┅K#s5u$┅┅┅4分所以乙、丙两人各自通过测试的概率分别是、.
┅┅┅┅┅┅┅6分(Ⅱ)因为
所以=
┅┅┅┅┅┅┅12分21.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.参考答案:【考点】直线与平面平行的判定;直线与平面所成的角.【分析】(Ⅰ)先取AA1的中点M,连接EM,BM,根据中位线定理可知EM∥AD,而AD⊥平面ABB1A1,则EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,则∠EBM直线BE与平面ABB1A1所成的角,设正方体的棱长为2,则EM=AD=2,BE=3,于是在Rt△BEM中,求出此角的正弦值即可.(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,根据中位线定理可知EG∥A1B,从而说明A1,B,G,E共面,则BG?面A1BE,根据FG∥C1C∥B1G,且FG=C1C=B1B,从而得到四边形B1BGF为平行四边形,则B1F∥BG,而B1F?平面A1BE,BG?平面A1BE,根据线面平行的判定定理可知B1F∥平面A1BE.【解答】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,∠EBM直线BE与平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE=,于是在Rt△BEM中,即直线BE与平面ABB1A1所成的角的正弦值为.(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E共面,所以BG?平面A1BE因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F?平面A1BE,BG?平面A1BE,故B1F∥平面A1BE.22.(本小题满分12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮肉类采购合同范本
- 展位展台设计合同范本
- 上海员工合同范本
- 餐厅直营托管合同范本
- 水果卖货合同范本
- 小型餐饮服务合同范本
- 2025年合同谈判中应注意的关键几点问题
- 2025汽车租赁合同模板
- 2025劳动合同申诉书模板
- 2025商业空间设计合同范本
- 高龄孕产妇的孕期管理课件
- 学习课件铸牢中华民族共同体意识PPT
- 湖南省对口招生考试医卫专业十年真题(2010-2019年)
- 用Excel求解运筹学中最大流问题详细操作示例
- 民航客舱服务艺术案例分析全套PPT完整教学课件
- 全国大学生市场调查与分析大赛优秀报告一等奖
- CET46大学英语四六级单词EXCEL版
- 2022年南通市特殊教育岗位教师招聘考试笔试试题及答案解析
- GB/T 4857.7-2005包装运输包装件基本试验第7部分:正弦定频振动试验方法
- GB/T 3051-2000无机化工产品中氯化物含量测定的通用方法汞量法
- GB/T 13936-1992硫化橡胶与金属粘接拉伸剪切强度测定方法
评论
0/150
提交评论