版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE42015~2016学年度第一学期期末考试试卷高一数学注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.参考公式:球的表面积公式;球的体积公式.第Ⅰ卷(选择题,共60分)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合,,则()A.B.C.D.2.下列几何体的截面图不可能是四边形的是()A.圆柱B.圆锥C.圆台 D.棱台3.已知空间两点,则两点间的距离是()A.5B.6C4.函数是上的增函数,且,则方程在内()A.有3个实数根B.有2个实数根C.有唯一的实数根D.没有实数根 5.正四棱锥底面正方形的边长为4,高与斜高的夹角为30°,则该四棱锥的侧面积为()A.B.C. D.6.直线与直线平行,则的值为()A.3或-1B.3C.-17.若,,,则的大小关系为()A.B.C.D.8.已知点则外接圆的圆心坐标为()A.B.C.D.9.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若则B.若∥,∥,则∥C.若∥,,则D.若∥,,则10.过点作圆的弦,其中最短的弦所在的直线方程为()A.B.C.D.11.是球上的三点,,球的直径等于13,则球心到平面的距离为()A.B.C.D.12.已知圆和两点,,若圆上存在点,使得,则的最小值为()A.B.C.D.第Ⅱ卷非选择题(共90分)二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答卷卡的相应位置上13.一个圆锥的侧面展开图是半径为的半圆,则此圆锥的体积为_______________.14.过圆上一点的切线方程为_________________.15.图1为某几何体的三视图,则该几何体的体积为_________________.图1图116.已知函数为偶函数,则该函数图象与轴交点纵坐标的取值范围是_____________________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数的定义域为,的值域为,若,求实数的取值范围.18.(本小题满分12分)如图2所示,长方体中,,是侧棱的中点.过点,,的平面与此长方体的面相交,交线围成一个四边形.(Ⅰ)请在图中作出此四边形(简要说明画法);(Ⅱ)证明平面.19.(本小题满分12分)图2已知方程:.图2(Ⅰ)若方程表示圆,求实数的范围;(Ⅱ)当方程表示圆时,该圆与直线相交于两点,且,求的值.20.(本小题满分12分)如图3,在三棱锥中,平面平面,为等边三角形,且,分别为,的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面平面;(Ⅲ)求三棱锥的体积.图3图321.(本小题满分12分)已知函数,定义域为,函数,定义域为.(Ⅰ)判断函数的奇偶性并证明;(Ⅱ)若不等式对于一切恒成立,求的取值范围.22.(本小题满分12分)已知两个定点,,动点满足.设动点的轨迹为曲线,过点与曲线交于不同的两点.(Ⅰ)求曲线的轨迹方程;(Ⅱ)求直线斜率的取值范围;(Ⅲ)若,求.
2015~2016学年度第一学期期末考试高一数学参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。四、只给整数分数,选择题和填空题不给中间分。一.选择题1-.ABBCAC7-CADDBB二.填空题14.;15.;16..三.解答题解:由函数可知,即函数的定义域为……………………4分又因为,所以函数的值域为………………8分又10分解:(Ⅰ)取中点,连结,则四边形即为所求四边形。(其它做法请酌情给分)4分(Ⅱ)为中点,又6分又平面,平面8分又平面,平面,平面,即平面12分19.解:(Ⅰ)由可得即6分(Ⅱ)设圆的半径为,圆心(1,2)到直线的距离8分又因为==110分即12分20.解:(Ⅰ)因为分别为的中点,所以2分又因为平面,平面所以平面4分(Ⅱ)因为,为的中点,所以6分又因为平面平面,平面平面=,且平面,所以平面.又因为平面所以平面平面8分(Ⅲ)在等腰直角三角形中,,所以.所以等边三角形的边长为2,面积.因为分别为的中点,所以10分又因为平面,所以三棱锥12分(其它方法请酌情给分)。21.解:(Ⅰ)函数定义域为且为奇函数4分(Ⅱ)在上任取两个不等的实数,不妨设,则由于,所以,即函数在上单调递增。6分由得即又因为函数在上单调递增,所以对一切恒成立,即,8分,故10分即=1,所以,所以12分22.解:(Ⅰ)设点坐标为由,得:整理得:曲线的轨迹方程为4分(II)方法一:依题意:设直线的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度太阳能光伏发电项目合作开发合同
- 核酸应急检测推演
- 护理18项核心制度
- 房屋买卖正规合同书范本
- 2024版土地流转中介保密协议书
- 二零二四年度网络推广合同(标的:某品牌网络营销服务)
- 二零二四年度企业网络维护合同withservicelevelagreementandsupportcontactdetails
- 2024版影视作品拍摄制作全面合同2篇
- 2024年度环保工程分包合同
- 2024年度物业服务合同服务内容、服务区域及费用计算3篇
- 2024年中国民航科学技术研究院社会招聘工作人员16人历年高频500题难、易错点模拟试题附带答案详解
- 2024年秋季学期新人教版七年级上册英语课件 Unit 3 My School(第1课时)SectionA 1a-1d
- 2024-2030年中国有机三文鱼市场消费规模调查与前景销售规模研究报告
- 2024至2030年光纤光缆行业竞争格局分析与投资风险预测报告
- TCOSOCC 018-2024 信息安全技术 数据泄漏防护产品技术要求
- 幼儿园中班语言绘本《换一换》课件
- 2024年秋季新人教版九年级上册化学全册教案
- 2024新苏教版一年级数学册第五单元第1课《认识11~19》课件
- 2024义务教育语文课程标准(2022版)考试试题和答案
- GSP兽药经营质量管理新规制度
- 我国灾难医学发展与现状
评论
0/150
提交评论