版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题41几何问题(2)之综合问题专题41几何问题(2)之综合问题题型精讲题型精讲题型一:材料阅读创新【例1】(2021·湖北中考真题)问题提出如图(1),在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0在SKIPIF1<0内部,直线SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0,线段SKIPIF1<0,SKIPIF1<0,SKIPIF1<0之间存在怎样的数量关系?问题探究(1)先将问题特殊化.如图(2),当点SKIPIF1<0,SKIPIF1<0重合时,直接写出一个等式,表示SKIPIF1<0,SKIPIF1<0,SKIPIF1<0之间的数量关系;(2)再探究一般情形.如图(1),当点SKIPIF1<0,SKIPIF1<0不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0是常数),点SKIPIF1<0在SKIPIF1<0内部,直线SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0,直接写出一个等式,表示线段SKIPIF1<0,SKIPIF1<0,SKIPIF1<0之间的数量关系.【答案】(1)SKIPIF1<0.(2)见解析;问题拓展:SKIPIF1<0.【分析】(1)先证明△BCE≌△ACD,得到AF=BE,BF-BE=BF-AF=EF=SKIPIF1<0;(2)过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,证明SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等腰直角三角形即可;利用前面的方法变全等为相似证明即可.【详解】问题探究(1)SKIPIF1<0.理由如下:如图(2),∵∠BCA=∠ECF=90°,∴∠BCE=∠ACF,∵BC=AC,EC=CF,△BCE≌△ACF,∴BE=AF,∴BF-BE=BF-AF=EF=SKIPIF1<0;(2)证明:过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,则SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形.∴SKIPIF1<0.∴SKIPIF1<0.问题拓展SKIPIF1<0.理由如下:∵∠BCA=∠ECD=90°,∴∠BCE=∠ACD,∵BC=kAC,EC=kCD,∴△BCE∽△ACD,∴∠EBC=∠FAC,过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于点M,则SKIPIF1<0,∴SKIPIF1<0.∴△BCM∽△ACF,∴BM:AF=BC:AC=MC:CF=k,∴BM=kAF,MC=kCF,∴BF-BM=MF,MF=SKIPIF1<0=SKIPIF1<0∴BF-kAF=SKIPIF1<0.【例2】(2021·浙江中考真题)(证明体验)(1)如图1,SKIPIF1<0为SKIPIF1<0的角平分线,SKIPIF1<0,点E在SKIPIF1<0上,SKIPIF1<0.求证:SKIPIF1<0平分SKIPIF1<0.(思考探究)(2)如图2,在(1)的条件下,F为SKIPIF1<0上一点,连结SKIPIF1<0交SKIPIF1<0于点G.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的长.(拓展延伸)(3)如图3,在四边形SKIPIF1<0中,对角线SKIPIF1<0平分SKIPIF1<0,点E在SKIPIF1<0上,SKIPIF1<0.若SKIPIF1<0,求SKIPIF1<0的长.【答案】(1)见解析;(2)SKIPIF1<0;(3)SKIPIF1<0【分析】(1)根据SAS证明SKIPIF1<0,进而即可得到结论;(2)先证明SKIPIF1<0,得SKIPIF1<0,进而即可求解;(3)在SKIPIF1<0上取一点F,使得SKIPIF1<0,连结SKIPIF1<0,可得SKIPIF1<0,从而得SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,最后证明SKIPIF1<0,即可求解.【详解】解:(1)∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0平分SKIPIF1<0;(2)∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0;(3)如图,在SKIPIF1<0上取一点F,使得SKIPIF1<0,连结SKIPIF1<0.∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.题型二:定义材料阅读【例3】(2020•北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=3x+23上,记线段AB到⊙O的“平移距离”为d1,求d1(3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2【分析】(1)根据平移的性质,以及线段AB到⊙O的“平移距离”的定义判断即可.(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=3x+23交x轴于M,交y轴于N.则M(﹣2,0),N(0,23),过点E作EH⊥MN于H,解直角三角形求出EH(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′和等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,点A′与M重合时,AA′的值最小,当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.解直角三角形求出AA′即可.【解析】(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2∥P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O的“平移距离”.故答案为:P1P2∥P3P4,P3.(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=3x+23交x轴于M,交y轴于N.则M(﹣2,0),N(0,23过点E作EH⊥MN于H,∵OM=2,ON=23,∴tan∠NMO=3∴∠NMO=60°,∴EH=EM•sin60°=3观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为32(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′,等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,当点A′与M重合时,AA′的值最小,最小值=OA﹣OM=52−当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.由题意A′H=32,AH∴AA′的最大值=(∴32≤d2题型三:操作材料阅读【例4】(2021·吉林中考真题)实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则SKIPIF1<0度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则SKIPIF1<0度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证SKIPIF1<0:.(2)若SKIPIF1<0,则线段AP的长为.【答案】操作一:45°,操作二:60°;(1)证明见解析;(2)SKIPIF1<0【分析】操作一:直接利用折叠的性质,得出两组全等三角形,从而得出SKIPIF1<0,SKIPIF1<0,从而得出∠EAF的值;操作二:根据折叠的性质得出SKIPIF1<0,从而得出SKIPIF1<0,即可求得SKIPIF1<0的度数;(1)首先利用SKIPIF1<0,得出SKIPIF1<0,则SKIPIF1<0,从而得出△ANF为等腰直角三角形,即可证得SKIPIF1<0;(2)利用三角函数或者勾股定理求出BE的长,则SKIPIF1<0,设DF=x,那么FC=SKIPIF1<0,在Rt△EFC中,利用勾股定理得出DF的长,也就是MF的长,即可求得EF的长,进而可得结果.【详解】操作一:45°,证明如下:∵SKIPIF1<0折叠得到SKIPIF1<0,SKIPIF1<0折叠得到SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故填:45°;操作二:60°,证明如下:∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0沿着EF折叠得到SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故填:60°;(1)证明:由上述证明得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∵四边形ABCD为正方形,∴∠C=∠D=90°,∴SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,∵SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0为等腰直角三角形,即AN=NF,在SKIPIF1<0和SKIPIF1<0中:∵SKIPIF1<0∴SKIPIF1<0(2)由题可知SKIPIF1<0是直角三角形,SKIPIF1<0,∴SKIPIF1<0,解得BE=1,∴BE=EM=1,SKIPIF1<0,设DF=x,则MF=x,CF=SKIPIF1<0,在Rt△CEF中,SKIPIF1<0SKIPIF1<0,解得x=SKIPIF1<0,则SKIPIF1<0,∵SKIPIF1<0∴AP=EF=SKIPIF1<0.【例5】(2021·青海中考真题)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作SKIPIF1<0等大小的角,可以采用如下方法:操作感知:第一步:对折矩形纸片SKIPIF1<0,使SKIPIF1<0与SKIPIF1<0重合,得到折痕SKIPIF1<0,把纸片展开(如图13-1).第二步:再一次折叠纸片,使点SKIPIF1<0落在SKIPIF1<0上,并使折痕经过点SKIPIF1<0,得到折痕SKIPIF1<0,同时得到线段SKIPIF1<0(如图13-2).猜想论证:(1)若延长SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,如图13-3所示,试判定SKIPIF1<0的形状,并证明你的结论.拓展探究:(2)在图13-3中,若SKIPIF1<0,当SKIPIF1<0满足什么关系时,才能在矩形纸片SKIPIF1<0中剪出符(1)中的等边三角形SKIPIF1<0?【答案】(1)SKIPIF1<0是等边三角形,理由见解析;(2)SKIPIF1<0,理由见解析【分析】(1)连接SKIPIF1<0,由折叠性质可得SKIPIF1<0是等边三角形,SKIPIF1<0,SKIPIF1<0,然后可得到SKIPIF1<0,即可判定SKIPIF1<0是等边三角形.(2)由折叠可知SKIPIF1<0,由(1)可知SKIPIF1<0,利用SKIPIF1<0的三角函数即可求得.【详解】(1)解:SKIPIF1<0是等边三角形,证明如下:连接SKIPIF1<0.由折叠可知:SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0为等边三角形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等边三角形.(2)解:方法一:要在矩形纸片SKIPIF1<0上剪出等边SKIPIF1<0,则SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,当SKIPIF1<0或(SKIPIF1<0)时,在矩形纸片上能剪出这样的等边SKIPIF1<0.方法二:要在矩形纸片SKIPIF1<0上剪出等边SKIPIF1<0,则SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,当SKIPIF1<0(或SKIPIF1<0)时,在矩形纸片上能剪出这样的等边SKIPIF1<0.提分作业提分作业1.(2021·山西中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在SKIPIF1<0中,SKIPIF1<0,垂足为SKIPIF1<0,SKIPIF1<0为SKIPIF1<0的中点,连接SKIPIF1<0,SKIPIF1<0,试猜想SKIPIF1<0与SKIPIF1<0的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将SKIPIF1<0沿着SKIPIF1<0(SKIPIF1<0为SKIPIF1<0的中点)所在直线折叠,如图②,点SKIPIF1<0的对应点为SKIPIF1<0,连接SKIPIF1<0并延长交SKIPIF1<0于点SKIPIF1<0,请判断SKIPIF1<0与SKIPIF1<0的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将SKIPIF1<0沿过点SKIPIF1<0的直线折叠,如图③,点A的对应点为SKIPIF1<0,使SKIPIF1<0于点SKIPIF1<0,折痕交SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0,交SKIPIF1<0于点SKIPIF1<0.该小组提出一个问题:若此SKIPIF1<0的面积为20,边长SKIPIF1<0,SKIPIF1<0,求图中阴影部分(四边形SKIPIF1<0)的面积.请你思考此问题,直接写出结果.【答案】(1)SKIPIF1<0;见解析;(2)SKIPIF1<0,见解析;(3)SKIPIF1<0.【分析】(1)如图,分别延长SKIPIF1<0,SKIPIF1<0相交于点P,根据平行四边形的性质可得SKIPIF1<0,根据平行线的性质可得SKIPIF1<0,SKIPIF1<0,利用AAS可证明△PDF≌△BCF,根据全等三角形的性质可得SKIPIF1<0,根据直角三角形斜边中线的性质可得SKIPIF1<0,即可得SKIPIF1<0;(2)根据折叠性质可得∠CFB=∠C′FB=SKIPIF1<0∠CFC′,FC=FC′,可得FD=FC′,根据等腰三角形的性质可得∠FDC′=∠FC′D,根据三角形外角性质可得∠CFC′=∠FDC′+∠FC′D,即可得出∠C′FB=∠FC′D,可得DG//FB,即可证明四边形DGBF是平行四边形,可得DF=BG=SKIPIF1<0,可得AG=BG;(3)如图,过点M作MQ⊥A′B于Q,根据平行四边形的面积可求出BH的长,根据折叠的性质可得A′B=AB,∠A=∠A′,∠ABM=∠MBH,根据SKIPIF1<0可得A′B⊥AB,即可证明△MBQ是等腰直角三角形,可得MQ=BQ,根据平行四边形的性质可得∠A=∠C,即可得∠A′=∠C,进而可证明△A′NH∽△CBH,根据相似三角形的性质可得A′H、NH的长,根据NH//MQ可得△A′NH∽△A′MQ,根据相似三角形的性质可求出MQ的长,根据S阴=S△A′MB-S△A′NH即可得答案.【详解】(1)SKIPIF1<0.如图,分别延长SKIPIF1<0,SKIPIF1<0相交于点P,∵四边形SKIPIF1<0是平行四边形,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0为SKIPIF1<0的中点,∴SKIPIF1<0,在△PDF和△BCF中,SKIPIF1<0,∴△PDF≌△BCF,∴SKIPIF1<0,即SKIPIF1<0为SKIPIF1<0的中点,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)SKIPIF1<0.∵将SKIPIF1<0沿着SKIPIF1<0所在直线折叠,点SKIPIF1<0的对应点为SKIPIF1<0,∴∠CFB=∠C′FB=SKIPIF1<0∠CFC′,SKIPIF1<0,∵SKIPIF1<0为SKIPIF1<0的中点,∴SKIPIF1<0,∴SKIPIF1<0,∴∠FDC′=∠FC′D,∵SKIPIF1<0=∠FDC′+∠FC′D,∴SKIPIF1<0,∴∠FC′D=∠C′FB,∴SKIPIF1<0,∵四边形SKIPIF1<0为平行四边形,∴SKIPIF1<0,DC=AB,∴四边形SKIPIF1<0为平行四边形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)如图,过点M作MQ⊥A′B于Q,∵SKIPIF1<0的面积为20,边长SKIPIF1<0,SKIPIF1<0于点SKIPIF1<0,∴BH=50÷5=4,∴CH=SKIPIF1<0,A′H=A′B-BH=1,∵将SKIPIF1<0沿过点SKIPIF1<0的直线折叠,点A的对应点为SKIPIF1<0,∴A′B=AB,∠A=∠A′,∠ABM=∠MBH,∵SKIPIF1<0于点SKIPIF1<0,AB//CD,∴SKIPIF1<0,∴∠MBH=45°,∴△MBQ是等腰直角三角形,∴MQ=BQ,∵四边形ABCD是平行四边形,∴∠A=∠C,∴∠A′=∠C,∵∠A′HN=∠CHB,∴△A′NH∽△CBH,∴SKIPIF1<0,即SKIPIF1<0,解得:NH=2,∵SKIPIF1<0,MQ⊥A′B,∴NH//MQ,∴△A′NH∽△A′MQ,∴SKIPIF1<0,即SKIPIF1<0,解得:MQ=SKIPIF1<0,∴S阴=S△A′MB-S△A′NH=SKIPIF1<0A′B·MQ-SKIPIF1<0A′H·NH=SKIPIF1<0×5×SKIPIF1<0-SKIPIF1<0×1×2=SKIPIF1<0.2.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形SKIPIF1<0绕点SKIPIF1<0顺时针旋转SKIPIF1<0,得到矩形SKIPIF1<0[探究1]如图1,当SKIPIF1<0时,点SKIPIF1<0恰好在SKIPIF1<0延长线上.若SKIPIF1<0,求BC的长.[探究2]如图2,连结SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0.线段SKIPIF1<0与SKIPIF1<0相等吗?请说明理由.[探究3]在探究2的条件下,射线SKIPIF1<0分别交SKIPIF1<0,SKIPIF1<0于点SKIPIF1<0,SKIPIF1<0(如图3),SKIPIF1<0,SKIPIF1<0存在一定的数量关系,并加以证明.【答案】[探究1]SKIPIF1<0;[探究2]SKIPIF1<0,证明见解析;[探究3]SKIPIF1<0,证明见解析【分析】[探究1]设SKIPIF1<0,根据旋转和矩形的性质得出SKIPIF1<0,从而得出SKIPIF1<0,得出比例式SKIPIF1<0,列出方程解方程即可;[探究2]先利用SAS得出SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,再结合已知条件得出SKIPIF1<0,即可得出SKIPIF1<0;[探究3]连结SKIPIF1<0,先利用SSS得出SKIPIF1<0,从而证得SKIPIF1<0,再利用两角对应相等得出SKIPIF1<0,得出SKIPIF1<0即可得出结论.【详解】[探究1]如图1,设SKIPIF1<0.∵矩形SKIPIF1<0绕点SKIPIF1<0顺时针旋转SKIPIF1<0得到矩形SKIPIF1<0,∴点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在同一直线上.∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.又∵点SKIPIF1<0在SKIPIF1<0延长线上,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.解得SKIPIF1<0,SKIPIF1<0(不合题意,舍去)∴SKIPIF1<0.[探究2]SKIPIF1<0.证明:如图2,连结SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.[探究3]关系式为SKIPIF1<0.证明:如图3,连结SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.在SKIPIF1<0与SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.3.(2020·山东中考真题)在等腰△ABC中,AC=BC,SKIPIF1<0是直角三角形,∠DAE=90°,∠ADE=SKIPIF1<0∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把SKIPIF1<0绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.【答案】(1)①SKIPIF1<0,SKIPIF1<0;②仍然成立,证明见解析;(2)SKIPIF1<0,理由见解析.【分析】(1)①如图1中,连接BE,设DE交AB于T.首先证明SKIPIF1<0再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明SKIPIF1<0(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把SKIPIF1<0绕点C逆时针旋转90°得到SKIPIF1<0,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.(2)结论:BE=SKIPIF1<0.如图3中,取AB的中点T,连接CT,FT.证明SKIPIF1<0,可得结论.【详解】解:(1)①如图1中,连接BE,设DE交AB于T.∵CA=CB,∠CAB=45°,∴∠CAB=∠ABC=45°,∴∠ACB=90°,∵∠ADE=SKIPIF1<0∠ACB=45°,∠DAE=90°,∴∠ADE=∠AED=45°,∴AD=AE,SKIPIF1<0SKIPIF1<0∴AT⊥DE,DT=ET,∴AB垂直平分DE,∴BD=BE,∵∠BCD=90°,DF=FB,∴CF=SKIPIF1<0BD,∴CF=SKIPIF1<0BE.故答案为:∠EAB=∠ABC,CF=SKIPIF1<0BE.②结论不变.解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.∵∠ACB=90°,CA=CB,AM=BM,∴CM⊥AB,CM=BM=AM,由①得:SKIPIF1<0设AD=AE=y.FM=x,DM=a,SKIPIF1<0点F是BD的中点,则DF=FB=a+x,∵AM=BM,∴y+a=a+2x,∴y=2x,即AD=2FM,∵AM=BM,EN=BN,∴AE=2MN,MN∥AE,∴MN=FM,∠BMN=∠EAB=90°,∴∠CMF=∠BMN=90°,∴SKIPIF1<0(SAS),∴CF=BN,∵BE=2BN,∴CF=SKIPIF1<0BE.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到SKIPIF1<0,连接DT,GT,BG.∵AD=AE,∠EAD=90°,EG=DG,∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,∵∠CAB=45°,∴∠CAG=90°,∴AC⊥AG,∴AC∥DE,∵∠ACB=∠CBT=90°,SKIPIF1<0∴AC∥BT∥SKIPIF1<0,∵AG=BT,∴DG=BT=EG,∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,∴BD与GT互相平分,SKIPIF1<0∵点F是BD的中点,∴BD与GT交于点F,∴GF=FT,由旋转可得;SKIPIF1<0SKIPIF1<0SKIPIF1<0是等腰直角三角形,∴CF=FG=FT,∴CF=SKIPIF1<0BE.(2)结论:BE=SKIPIF1<0.理由:如图3中,取AB的中点T,连接CT,FT.∵CA=CB,∴∠CAB=∠CBA=30°,∠ACB=120°,∵AT=TB,∴CT⊥AB,SKIPIF1<0∴AT=SKIPIF1<0,∴AB=SKIPIF1<0,∵DF=FB,AT=TB,∴TF∥AD,AD=2FT,∴∠FTB=∠CAB=30°,∵∠CTB=∠DAE=90°,∴∠CTF=∠BAE=60°,∵∠ADE=SKIPIF1<0∠ACB=60°,SKIPIF1<0∴AE=SKIPIF1<0AD=SKIPIF1<0FT,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.4.(2021·浙江中考真题)(推理)如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.(1)求证:SKIPIF1<0.(运用)(2)如图2,在(推理)条件下,延长BF交AD于点H.若SKIPIF1<0,SKIPIF1<0,求线段DE的长.(拓展)(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,两点,若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值(用含k的代数式表示).【答案】(1)见解析;(2)SK
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高层建筑玻璃幕墙清洗服务合同3篇
- 2025版房地产代理售后服务规范操作合同2篇
- 建材栏杆销售合同范文
- 包头轻工职业技术学院《环境工程基础》2023-2024学年第一学期期末试卷
- 2024年高效节能配电室安装与维护服务合同3篇
- 2024年跨国基础设施建设合同3篇
- 2025年度保安人员职业发展规划合同3篇
- 2024年限定区域消防设施养护服务协议版B版
- 2025版净水器租赁与绿色生活倡导服务合同2篇
- 2025年度企业人力资源招聘渠道拓展外包合同3篇
- 石油形成过程科普知识讲座
- 辅警心理健康知识讲座
- 《枣树常见病虫害》课件
- 刑法试题库大全
- 燃气安装人员管理制度
- 省份简称课件
- 公民科学素质调查问卷
- 小学健康教育试题-及答案
- 钢构件应力超声检测技术规程
- -《多轴数控加工及工艺》(第二版)教案
- 体 育 课 教 学 评 价 量 表
评论
0/150
提交评论