精选河北省保定市2023届高三第一次模拟考试理科数学试题_第1页
精选河北省保定市2023届高三第一次模拟考试理科数学试题_第2页
精选河北省保定市2023届高三第一次模拟考试理科数学试题_第3页
精选河北省保定市2023届高三第一次模拟考试理科数学试题_第4页
精选河北省保定市2023届高三第一次模拟考试理科数学试题_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市2023届高三第一次模拟考试理科数学试题2023年高三第一次模拟考试理科数学试题一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合,集合,那么的子集个数为〔〕A.1B.2C.3D.42.设为的虚部,为的实部,那么〔〕A.-1B.-2C.-3D.03.具有线性相关的变量,设其样本点为,回归直线方程为,假设,〔为原点〕,那么〔〕A.B.C.D.4.非向量,那么或是向量与夹角为锐角的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.甲、乙、丙、丁四位同学高考之前方案去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,那么不同的安排方法种数为〔〕A.8B.7C.6D.56.2023年国际数学家大会在北京召开,会标是以我国古代数学家赵爽的弦图为根底设计.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形〔如图〕.如果小正方形的边长为2,大正方形的边长为10,直角三角形中较小的锐角为,那么〔〕A.B.C.D.7.如以以下图的程序框图中,输出的为〔〕A.B.C.D.8.函数既是二次函数又是幂函数,函数是上的奇函数,函数,那么〔〕A.0B.2023C.4036D.40379.如图是某几何体的三视图,那么该几何体的外接球的外表积为〔〕A.B.C.D.10.向量,向量,函数,那么以下说法正确的选项是〔〕A.是奇函数B.的一条对称轴为直线C.的最小正周期为D.在上为减函数11.双曲线的左顶点为,虚轴长为8,右焦点为,且与双曲线的渐近线相切,假设过点作的两条切线,切点分别为,那么〔〕A.8B.C.D.12.令,函数,满足以下两个条件:①当时,或;②,,,那么实数的取值范围是〔〕A.B.C.D.二、填空题:此题共4小题,每题5分,总分值20分,将答案填在答题纸上13.的展开式中的系数是5,那么.14.甲、乙、丙三个各自独立地做同一道数学题,当他们都把自己的答案公布出来之后,甲说:我做错了;乙说:丙做对了;丙说:我做错了.在一旁的老师看到他们的答案并听取了他们的意见后说:“你们三个人中有一个人做对了,有一个说对了.〞请问他们三个人中做对了的是.15.实数满足,假设取得最小值时的最优解满足,那么的最小值为.16.分别为的三个内角的对边,,且,为内一点,且满足,那么.三、解答题:共70分.解容许写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.〔一〕必考题:共60分.17.数列满足:,且.〔1〕求数列的通项公式;〔2〕假设数列满足,且.求数列的通项公式,并求其前项和.18.某品牌服装店五一进行促销活动,店老板为了扩大品牌的知名度同时增强活动的趣味性,约定打折方法如下:有两个不透明袋子,一个袋中放着编号为1,2,3的三个小球,另一个袋中放着编号为4,5的两个小球〔小球除编号外其它都相同〕,顾客需从两个袋中各抽一个小球,两球的编号之和即为该顾客买衣服所打的折数〔如,一位顾客抽得的两个小球的编号分别为2,5,那么该顾客所习的买衣服打7折〕.要求每位顾客先确定购置衣服后再取球确定打折数.三位顾客各买了一件衣服.〔1〕求三位顾客中恰有两位顾客的衣服均打6折的概率;〔2〕两位顾客都选了定价为2000元的一件衣服,设为打折后两位顾客的消费总额,求的分布列和数学期望.19.如图,四棱台中,底面,平面平面为的中点.〔1〕证明:;〔2〕假设,且,求二面角的正弦值.20.椭圆的离心率为,且过点.〔1〕求椭圆的方程;〔2〕设为椭圆上任一点,为其右焦点,是椭圆的左、右顶点,点满足.①证明:为定值;②设是直线上的任一点,直线分别另交椭圆于两点,求的最小值.21.函数.〔1〕讨论函数的单调性;〔2〕假设有两个极值点,证明:.〔二〕选考题:共10分.请考生在22、23两题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22.在平面直角坐标系中,曲线的参数方程为〔为参数,〕,在以为极点,轴的正半轴为极轴的极坐标系中,直线与相交于两点,且.〔1〕求的值;〔2〕直线与曲线相交于,证明:〔为圆心〕为定值.23.函数.〔1〕解关于的不等式;〔2〕假设函数,当且仅当时,取得最小值,求时,函数的值域.试卷答案一、选择题1-5:DABBB6-10:ACDCD11、12:DB二、填空题13.-114.甲15.916.3三、解答题17.解:〔1〕由知数列为等差数列,且首项为1,公差为,所以;〔2〕∵,∴,∴数列是以为首项,为公比的等比数列,,从而,,,∴,所以.18.解:打5,6,7,8折的概率分别为,〔1〕事件为“三位顾客中恰有两位顾客打6折〞,所以;〔2〕的可能取值为2000,2200,2400,2600,2800,3000,3200,,,,,,,,所以的分布列为2000220024002600280030003200元.19.〔1〕证明:连接,∵为四棱台,四边形四边形,∴,由得,,又∵底面,∴四边形为直角梯形,可求得,又为的中点,所以,又∵平面平面,平面平面,∴平面平面,∴;〔2〕解:在中,,利用余弦定理可求得,或,由于,所以,从而,知,如图,以为原点建立空间直角坐标系,,由于平面,所以平面的法向量为,设平面的法向量为,,,设,所以,,∴,即二面角的正弦值为.20.解:〔1〕由得,把点代入椭圆方程为,∴得,∴,椭圆的标准方程为;〔2〕由〔1〕知,,而,∴为定值;②设假设,那么,假设,因为,直线,直线,由整理得,∴,得,由整理得,∴,得,由①知,∴,∵〔当且仅当即时取等号〕∴,即的最小值为3.21.解:〔1〕,令,①即时,,故恒成立,所以在上单调递增;②当即时,恒成立,所以在上单调递增;③当时,由于的两根为,所以在为增函数,在为减函数,综上:时,函数在为增函数;时,函数在为增函数,在为减函数;〔2〕由〔1〕知,且,∴,而,∴,设,那么,所以在上为减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论