




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
March2023
ArtificialIntelligenceSectorStudy
ResearchreportfortheDepartment
forScience,Innovation&
Technology(DSIT)
Contents
IExecutiveSummary 2
1.Introduction 5
1.1.Methodology&Sources 5
1.2.Approach 5
1.3.InterpretationofData 6
1.4.Acknowledgements 7
2.UKArtificialIntelligenceSectorProfile 6
2.1.DefiningtheUKArtificialIntelligenceSector 6
2.2.NumberofUKAICompanies 8
3.LocationofUKAICompanies 17
3.1.AIActivitybyUKRegion 17
3.2.RegionalAIActivitybySector 18
3.3.InternationalActivity 19
4.EconomicContributionofUKAICompanies 22
4.1.EstimatedRevenue 22
4.2.EstimatedEmployment 26
4.3.EstimatedGrossValueAdded 30
4.4.SummaryofEconomicContribution 31
5.InvestmentinUKAICompanies 33
5.1.InvestmenttoDate 33
5.2.InvestmentMarketDynamics 41
6.FutureAISectorDevelopment 44
6.1.RecentSectorDevelopments 44
6.2.PotentialFutureSupport 45
6.3.SectorChallenges&Opportunities 46
6.4.FurtherSectorAnalysis,Monitoring&Evaluation 49
IExecutiveSummary
ThegovernmentcommissionedPerspectiveEconomics,glass.ai,IpsosandacademicexpertstoundertakearesearchstudytobetterunderstandtheprofileoftheUKAISectoranditscontributiontotheUKeconomy.Basedonacombinationofextensivecollectionandanalysisofsecondarydataandstrategicqualitativeresearchincludingasurveyof250UKAIbusinesses,and22in-depthinterviewswithAIbusinessesandstrategicstakeholders,thisreportprovidesabaselinesetofdataonthesizeandscaleoftheUK’sAIsector,intendedtosupportgovernment’songoingdevelopmentandmonitoringofkeyAIpolicies.
I.1HeadlineSectorMetrics
Thestudyhasidentifiedatotalof3,170UKAIcompaniesthatgenerated£10,6bninAIrelatedrevenues,employedmorethan50,000peopleinAIrelatedroles,generated£3.7bninGrossValueAddedandhavesecured£18.8bninprivateinvestmentsince2016.
FigureI.1–SectorHeadlines
I.2KeyFindings
ThereportprovidesfurtherbreakdownsofthesemetricsacrossUKregions,andaccordingtopredictedAIbusinessmodelsandtechnologicalcapabilities.Someofthemostsalientfindingsemergingfromthisbaselineresearchinclude:
•Atotalof3,170activeAIcompanieshavebeenidentifiedthroughthestudy.
•Ofthe3,170activecompaniesidentifiedthroughthestudy60%arededicatedAIbusinessesand40%arediversifiedi.e.,haveAIactivityaspartofabroaderdiversifiedproductorserviceoffer.
•Comparedtosimilarstudiesintootheremergingtechnologysectors,agreaterproportionofdiversifiedAIcompanieshavebeenidentified,highlightingthebroadscopefordevelopmentofAItechnologyapplicationsbyestablishedtechnologycompaniesacrosssectors.
•Onaverage269newAIcompanieshavebeenregisteredeachyearsince2011,withapeakinnewcompanyregistrationsinthesameyearastheAISectorDeal(2018,n=429).
•Together,thedataoncompanysizeandbusinessmodelsuggestthatdedicatedAIcompaniesarebothsmallerandmoredependentonAIproductsforrevenue.DiversifiedAIcompaniesaretypicallylargerandlikelytogenerateagreaterproportionofrevenuesfromlesscapital-intensiveprovisionofAIrelatedservices.
•London,theSouthEastandtheEastofEnglandaccountfor75%ofregisteredAIofficeaddresses,andalsofor74%oftradingaddresses.JustunderonethirdofAIcompanieswitharegisteredaddressoutsideofLondon,theSouthEastandtheEastofEnglandstillhaveatradingpresenceinthoseregions,highlightingtheapparentsignificanceofthoseregionstodevelopmentoftheUKAIsectortodate.
•Whileabsolutenumbersaresmaller,thestudyhasidentifiedmorenotableproportionsofwiderregionalAIactivityinautomotive,industrialautomation&machinery;energy,utilitiesandrenewables;health,wellbeingandmedicalpractice,andagriculturaltechnology.
•Inthemostrecentfinancialyear,annualrevenuesgeneratedspecificallyfromAIrelatedactivitybyUKAIcompaniestotalledanestimated£10.6billion,splitapproximately50/50betweendedicatedanddiversifiedcompanies.
•AcrossbothdedicatedanddiversifiedAIcompanies,studyestimatessuggestthatthereare50,040FullTimeEquivalents(FTEs)employedinAIrelatedroles,53%ofwhicharewithindedicatedAIcompanies.
•Basedonacombinationofofficialcompanydata,surveyresponsesandassociatedmodelling,AIcompaniesareestimatedtocontribute£3.7bninGVAtotheUKeconomy.ForlargecompaniestheGVA-to-turnoverratiois0.6:1(i.e.,forevery£1ofrevenue,largeAIcompaniesgenerate60pindirectGVA).GVA-to-turnoverratiosamongSMEsaremuchlower(0.2:1formediumsizedcompaniesandnegativeforsmallandmicrobusinesses),whichreflectsthecapitalintensive,highR&Dnatureofdeeptechnologydevelopment.
•Since2016,AIcompanieshavesecuredatotalof£18.8bninprivateinvestment.2021wasarecordyearforAIinvestment,withover£5bnraisedacross768deals,representing
anaveragedealsizeof£6.7m.Further,AIinvestmentincreasedalmostfive-foldbetween2019and2021.
•In2022dedicatedAIcompaniessecuredahigheraveragedealvaluethandiversifiedcompaniesforthefirsttime.However,dataonAIinvestmentbystageofevolutionmayalsobesignallingsometighteningofinvestmentavailabletoSeedandVentureStagecompaniesand,giventhesignificanceofprivateinvestmentforAItechnologydevelopmentevidencedbydataonrevenuesandGVA,thiscouldposearisktorealisingthepotentialwithinearly-stageAIcompanies.
•ThestudyhighlightedanotableopportunityforcompaniesoperatingintheAIimplementationspacetobuildteamsofAIimplementationexpertsthatcansupportAIadoptionopportunitiesacrosssectors.Thisadoptionopportunityissupportedbyinvestmentdata,whichhighlightsthatin2022investmentsweremadein52uniqueindustrysectors,comparedtoinvestmentsacrossjust35differentsectorsin2016.
1.Introduction
PerspectiveEconomics,incollaborationwithIpsos,glass.ai,andProfessorsRobProcter(UniversityofWarwick)andRogerWoods(Queen’sUniversityBelfast)werecommissionedinAugust2022todeliveranassessmentoftheUK’sartificialintelligence(AI)sector.
Theaimofthestudyistobetterunderstandthescale,profileandeconomiccontributionofUK’sAISector,andtoprovideabaselinesetofdatathatcansupportgovernment’songoingdevelopmentandmonitoringofkeyAIpolicies.
AItechnologieshavebeenindevelopmentfordecades,howevertheirtransformativepotentialisbeingincreasinglyrealisedthroughdevelopment,applicationandpublicdebateregardingevermoresophisticatedmachinelearningsoftware.ThisreportisthereforetimelygiventheimportanceofgovernmentpolicyregardingtheethicalandregulatoryparameterswithinwhichAItechnologiesaredevelopedandappliedintheUK.
1.1.Methodology&Sources
Thestudyhasbeendesignedtoprovideinsightintothefollowingsetofcoreresearchquestions:
•HowmuchdoestheUK’sAISectorcontributetotheUKeconomy,includingrevenue,employment,GrossValueAdded(GVA),exportsandR&Dspending?
•WhatisthecompositionoftheUK’sAIsector,intermsofbusinesssize,location,andproductoffering?
•Whathavebeenthedriversofgrowthinthemarket,andwhatarethekeyupcomingchallenges?
Itisanticipatedthattheresearchwillbereplicatedinsubsequentyearsandassuch,themethodologyfordatacollectionandanalysisiswhollytransparentandrepeatable.
1.2.Approach
Thestudyusesamixedmethodsapproach,combiningacademia,policyandinvestmentspheres.Keymethodologicalstepsaresummarisedbelow,withfullerdetailprovidedinappendicestothereport.
Stage1–Collationofinitialdatainputs:along-listofAIcompaniesdeemedtobepotentiallywithinthescopeofthestudywasidentifiedfromnumeroussources,predominantlyviawebintelligencegeneratedbyGlass.ai’sweb-readingcapabilities.JustunderonethirdofcompanieswerealsoidentifiedviaothersourcesincludingbutnotlimitedtoBureauvanDijk’sFAME,Beauhurst,Crunchbase,LightcastandFDIMarkets.
Stage2–Initialclassificationandfiltering:AsetofkeywordsandcategorieswereidentifiedthroughacombinationofautomatedclassificationusingGlass.ailanguagemodelsandworkshopsessionswithrepresentativesfromacademia,industry,governmentandthecore
studyteam.Thelong-listofpotentiallyin-scopefirmswasrefinedandfilteredtoprovideashortlistof3,170in-scopeAIcompanies.
Stage3–Surveydesignandadministration:adetailedbusinesssurveywasdesignedwithinputfromthestudysteeringgroup,includingrepresentativesfromDSITandacademicandcommercialresearchexpertise.Thesurveywasadministeredviamultiplechannels,includingviatelephone,e-mailandweb-hosting.Atotalof250responseswerereceived.
Stage4–Dataaugmentation:aseriesofmanualdataqualitycheckswereconductedacrosskeymetrics(revenue,employment,location,classification)byboththecorestudyteamandDSITanalysts.Companydatawasthenaugmentedusingmultipledatasources,providingaconsistentsetofkeymetricsforeachUKAIbusiness.
Figure1.1–Shortlisting&AugmentationOverview
Source:PerspectiveEconomics
Stage5–Regional&sub-sectoralanalysis:moregranulardataonthetradinglocationsofin-scopeAIcompanieswasgatheredthroughweb-intelligenceandproprietarydatasources,enablingamoredetailedanalysisofthetradingpresenceofUKAIcompanieslocally,andinternationally.
Stage6–Sectormodelling:Theshort-listedAIcompanysetwasusedtoproduceanalysesofthenumber,scaleandlocationofUKAIcompanies,incorporations,investment,R&Dexpenditureandexports.
Stage7–Qualitativeinterviews&casestudies:in-depthfollow-upinterviewswereconductedwith10AIcompaniesthatrespondedtothesurvey.Findingswerecombinedwiththosefrom10in-depthsemi-structuredstrategicstakeholderinterviewstoaddressqualitativeresearchquestionsregardingstrengths,weaknesses,opportunities,challengesandriskstotheUKAIsector.
Stage8–Analysis&reporting:findingsfromthequantitativeandqualitativeresearchweresynthesisedthroughsteeringgroupdiscussionsandqualitativeanalysissessionsandtriangulatedtoinformthisbaselinereport.
1.3.InterpretationofData
ArtificialIntelligenceactivityintheUKisnotdefinedbyaformalStandardIndustrialClassification(SIC)code1.ThisstudythereforeusesexperimentalmethodstoidentifyandquantifyAIactivityacrosstraditionaleconomicsectors.Theapproachandmethodologyare
1SICcodesarethecurrentsystemofclassifyingbusinessestablishmentsandotherstatisticalunitsbytypeofeconomicactivityinwhichtheyareengaged.
consistentwiththoseemployedtodeliveranalysesoftheUKcybersecuritysectorannuallysince20182.Thedatausedtoinformthestudyincludes:
•IdentificationofAIfirmsaccordingtoanagreedtaxonomyusingAIdrivenlanguagemodelsappliedacrosswebsites,news,socialmedia,academicandofficialsources.
•EnrichmentofwebdatausingopenandproprietarydatasourcesincludingCompaniesHouse(companyname,registrationnumber,locations,incorporationdate),BureauvanDijkFAME(revenue,employment,profitability,remuneration,R&Dspend)andBeauhurst(externalgrants,fundraisings,acceleratorattendance,M&Aactivity).
Acrossthisreport,percentagesfromthequantitativedatamaynotaddto100%duetoroundingand/ortheoptiontoselectmultipleresponsestocertainsurveyquestions.ItisalsoimportanttonotethatthesurveydataisbasedonasampleofAIcompaniesandarethereforesubjecttosamplingtolerances.Theoverallmarginoferrorforthesampleof250AIcompanies(withinapopulationof3,170companies)isbetweenc.3andc.6percentagepointsata95%confidencelevel.Thelowerendofthisrange(3percentagepoints)isusedforsurveyestimatescloserto10%or90%.Thehigherend(6percentagepoints)isusedforsurveyestimatesaround50%.Datafromthe22qualitativeconsultationsisintendedtobeillustrativeofthekeythemesaffectingAIactivityintheUKgenerally,ratherthanastatisticallyrepresentativeviewofAIsectorbusinessesorinvestors.
1.4.Acknowledgements
TheauthorswouldliketothanktheDSITteamfortheirsupportacrossthestudy.DSITandthereportauthorswouldalsoliketothankallthosewhocontributedtotheresearch,includingthosewhotookpartinin-depthstrategicstakeholderinterviews,respondedtothebusinesssurvey,orotherwiseofferedintelligenceandinsightstothestudy.
Note:Thisreportusesexperimentalmethodstodefine,scopeandmeasurethescale
oftheUK’sAIsector.Wethereforewelcomecommentsandfeedbackregardingthe
methodologyorfindingsherein,throughcontacting
digital-analysis-team@.uk
.
2DSIT(2022)CyberSecuritySectoralAnalysis2022,accessibleat[.uk/government/publications/cyber-security-sectoral-analysis-2022]
2.UKArtificialIntelligenceSectorProfile
TheNationalAIStrategydescribesArtificialIntelligence(AI)asthe“fastestgrowingdeeptechnologyintheworld,withhugepotentialtorewritetherulesofentireindustries,drivesubstantialeconomicgrowthandtransformallareasoflife”3.Recognisingchallenges,limitationsandquestionablevalueoftryingtotightlydefineAI,theAIregulationpolicypaper–Establishingapro-innovationapproachtoregulatingAI4–describesAIas“ageneral-purposetechnologylikeelectricity,theinternetandthecombustionengine.”ItdefinesthecorecharacteristicsofAIasthe‘adaptiveness’and‘autonomy’ofthetechnologyi.e.,thatAItechnologycanoperateonthebasisofinstructionswhichhavebeenlearntratherthanprogrammed,andthatcanbeautonomouslyappliedwithindynamicandfast-movingenvironments.
2.1.DefiningtheUKArtificialIntelligenceSector
TheanalysescontainedinthisreportarebasedonacommerciallyorientedtaxonomyofAIactivityintheUK.The‘commerciallyoriented’distinctionismadegiventhecommercialnatureofthelanguageusedtoinformthisstudy(drawnfromwebandtrade-baseddescriptionsofcompanyactivity),vis-à-vismoretechnicalterminologythatiscurrentlybeingusedinparallelactivitytobetterunderstandresearch-relatedtechnologicalAIdevelopments.Asdiscussedfurtheroverleaf,thestudysegmentscompaniesaccordingtoanagreedtaxonomy,includingadelineationbetween‘dedicated’and‘diversified’AIcompanies.Table2.1providesanillustrationofsomeofthemostprominentdedicatedanddiversifiedAIcompaniesidentified.
Table2.1–KeyAISectorContributors–Dedicated&Diversified
Dedicated
Diversified
1DeepMind
1FacebookUK
2
LimeJump
2
IBMUK
3LoopMe
3Microsoft
4
Peak
4
GoogleUK
5Ivefi.ai
5Accenture
6
Lendable
6
Amazon
7Deloitte
7EquippedAI
8
Improbable
8
Vodafone
9Cognizant
9Exscientia
10
Tractable
10
BT
Source:Glass.ai,PerspectiveEconomics
3DSIT(2021)NationalAIStrategy,DepartmentforScienceInnovation&Technology.
4.uk/government/publications/establishing-a-pro-innovation-approach-to-regulating-ai/establishing-a-pro-innovation-approach-to-regulating-ai-policy-statement
ThetaxonomyusedtodescribeAIactivityinthisstudyisillustratedinFigure2.1.SalientpointstonoteregardingthetaxonomyarediscussedbelowFigure2.1,andthefulltaxonomyisalsoavailabletoviewintheappendicestothisreport.
Figure2.1–UKAITaxonomy
Source:PerspectiveEconomics
Foreaseofreference,salientpointsregardingthesectortaxonomyinclude:
•Pre-requisitesforinclusion:TobeincludedinthestudycompaniesmustberegisteredandhaveanactivepresenceintheUK.
•DedicatedvsDiversifiedAIcompanies:atthehighestlevel,thetaxonomysegmentsthebusinesspopulationaccordingtowhethertheyareadedicatedAIcompany,orwhetherAIactivitymakesupasmallerproportionofamuchbroadercommercialbusinessoffering.DedicatedAIcompaniesareconsideredtobebusinessesthatprovideaproprietaryAItechnicalservice,product,platformorhardwareastheirprimaryrevenuesource.
•AIBusinessModel:atalowerlevelthetaxonomysegmentsbetweencreatorsofAIinfrastructure5,developersofAIproducts6andAIserviceproviders7.AdoptersofAIproductsorservicesdevelopedbyothersareconsideredtobeoutsidethescopeofthisstudytoavoiddoublecountingandtohelpensurethattheanalysisispredominantlyfocussedonvalueaddedtotheUKeconomybyAIsectoractivity.
5Includinghardware,frameworks,software,librariesandplatforms.
6Companiesproducingbespoke,valueaddingAIsolutionsmarketedandsoldasproducts.
7CompaniesofferingskillsandexpertisetosupporttheadoptionofAIproducts.
•AICapabilities:theanalysescontainedinthereportsegmentAIsectoractivityaccordingtothemaintechnologicalcapabilitythatunderpinsbusinessmodels.WhilemanyofthecompaniesidentifiedemploymultipleAIcapabilities,languagemodelswereadjustedtoidentifyboththeforemostAIcapability,aswellasallothercapabilitiesmentioned.MachineLearningisagenerictermthatunderpinsallothercapabilities.Itisincludedasacategoryherebecauseinmanyinstancesdescriptivecompanyinformation(thebasisofclassification)doesnotfurtherspecifytechnicalcapabilities.
•Industries:tosupportcomparativeanalyseswithSICbasedeconomicdataeachcompanyisalsoassignedtoasingleindustrywhichisderivedfromandcanbemappedbacktoSICCodes.
Inaddition,eachin-scopecompanyhasbeenclassifiedintoindustrysectorsusingGlass.ai’sproprietarytopicontologies.ThemostprominentindustrysectorsreferredtoinSection3arelistedbelowandasummaryofcompaniesassignedtobothGlass.aisectorsandStandardIndustrialClassification(SIC)codesareavailableintheappendices.
•ComputerSoftware
•InformationTechnologyandServices
•Biotechnology,LifeSciences&Pharma
•FinancialServices
•ProfessionalServices
•WiderHealth&MedicalPractice
•R&DandScientific
•Automotive,IndustrialAutomation&Machinery
•Energy,Utilities&Renewables
•AgriculturalTechnology
2.2.NumberofUKAICompanies
BasedonacombinationofAIdrivenwebintelligence,andcollationofcompanydatafromnumerousopenandproprietarysourcesincludingCompaniesHouse,BureauvanDijk,BeauhurstandLightcast,weestimatethattherearecurrently3,170activecompaniesintheUKprovidingAIinfrastructures,productsandservices.Aspreviouslystated,thisfocussesspecificallyonvalue-addedbytheAIsectoranddoesnotthereforeincludethewidervalueaddedbyadoptionofAItechnologiesacrossothersectors.
2.2.1.RegisteredCompaniesbySize
Ninety-sixpercentofthecompanies
identifiedareSMEs;60%ofall
companiesaremicrobusinesses
(Figure2.2).
Consultationwithstrategic
stakeholdersfromacrossindustry,
academiaandpolicyspheres
pointedtothepresenceofa
significantnumberoflarge
technologyfirmsasakeystrengthof
theUK’sAIecosystem,deemedto
beatleastinpartduetotheUK’s
reputationforhighqualityscientific
researchandinnovation.This
assertionissupportedbya
comparisonofthesizeofcompaniesin
theAIsectorvis-à-visthebroaderUKbusinesspopulation8(Table2.1).ThetablebelowevidencesthattheAIsectorhasagreaterconcentrationoflarge,mediumandsmallbusinessesthanthegeneralUKBusinesspopulation.
Table2.1–AISizeProfileComparison
Size
UKBusiness
Population
Estimates(2022)
Percentage
AISectoral
Analysis
Percentage
Large(250+
employees)
7,675
<1%
132
4%
Medium(50-249)
35,940
3%
262
8%
Small(10-49)
217,240
15%
887
28%
Micro(1-9)
1,187,045
82%
1,889
60%
AllBusinesseswithatleast1employee
1,447,900
100%
3,170
100%
Source:ONS,Glass.ai
8UKBusinessPopulationEstimates(2022):Availableat:
.uk/government/statistics/business-population-
estimates-2022
2.2.2.Dedicated&DiversifiedAICompanies
Ofthe3,170activecompaniesFigure2.3–DedicatedandDiversifiedAICompanies
identifiedthroughthestudy60%are
dedicatedAIbusinessesand40%are
diversified(i.e.,haveAIactivityas
partofabroaderdiversifiedproduct
orserviceoffer,Figure2.3).
Incomparisontoothersimilarstudies
theproportionofdiversified
companieswithintheAIsectoris
higher.Thisisindicativeofthe
comparativelybroadscopeforAI
technologyapplicationsacross
sectors,andpointstoanintense
focusondevelopmentofAI
technologyamongbothdedicated
companies(e.g.,DeepMind,Source:Glass.ai,PerspectiveEconomics(n=3,170)
Improbable,BenevolentAI)and
established,diversifiedtechnologycompanieswithmuchbroaderserviceoffers(e.g.,Amazon,Google,Microsoft,IBM)9.
Figure2.4overleafshowsthatmostlargeAIcompaniesarediversified(89%,n=118),whereasthemajorityofmicro-AIcompaniesarededicated,meaningthatAIiscoretotheirbusinessmodel(68%,n=1,288).
9Itisworthnotingherethat,giventhebreadthandvaryingscaleofAIactivity,itisnotpossibletodelineatededicatedanddiversifiedAIfirmssolelyonthebasisoftheproportionofAIrelatedrevenueoremploymentwithincompanies.CompanieswithrelativelysmallAIteamscanbededicatedAIcompaniesandbythesametoken,companieswithlargeAIteamscanbediversified.Thereforeinstead,thestudyusedacombinationofdataonAIrelatedemploymentandadetailedmanualreviewofcompanydescriptionsasthebasisoffinaldecisionsonwhetherornotacompanyfallsintothededicatedordiversifiedcategory.
Figure2.4–AICompanySize
Source:Glass.ai,PerspectiveEconomics(n=3,170)
2.2.3.AICompanyRegistrations
AnalysisofincorporationdatesacrossthepopulationofAIcompaniesshowssignificantgrowthinAIcompanyregistrationssince2011.Onaverage,269newAIcompanieshavebeenregisteredeachyearsince2011,withapeakinnewcompanyregistrationsinthesameyearastheAISectorDeal(2018,n=429)andsmallernumbersofnewcompanyregistrationssince(Figure2.5overleaf)10.
10Analysisexcludes2022duetodatagapsassociatedwiththenormallaginavailabilityofcompanydata.
Figure2.5–AICompanyRegistrations
Source:PerspectiveEconomics,Glass.ai,CompaniesHouse(1998–2021|n=3,030
companiesincorporatedsince1998)
2.2.4.PredictedAIBusinessModel
ThetaxonomycanbeusedtobetterunderstandtheprofileoftheAIsectoraccordingtothebroadfocusofAIactivity(i.e.,infrastructure,productsorservices)andatalower-level,categorisationofthecorecapabilityofin-scopecompanies.Figure2.6overleafpresentsthetwomaintaxonomylevelsasanexcerptforeaseofreference.Analysesthatfollowfocusonthebusinessmodelsandcapabilitiesofcompaniesincludedinthefinaldataset.EachcompanyisassignedtoasinglebusinessmodelandcapabilitybasedonthehighestprobablecategorisationusingthelanguagemodelsdevelopedbyGlass.ai.
Figure2.6–AIBusinessModels&Capabilities
Source:Glass.ai,TaxonomyWorkshopOutputs
Acrosstheentirepopulation82%ofcompaniesfallwithinthebusinessmodelcategoriesofAIproductsandinfrastructures(72%and11%respectively),withtheremaining18%engagedpredominantlyinprovidingAI-relatedservices11.AgreaterproportionofdedicatedAIcompaniesprimarilyproduceAIrelatedproducts(75%ofdedicatedcompaniescomparedto66%ofdiversifiedcompanies).Together,thedataoncompanysizeandbusinessmodelsuggestthatdedicatedAIcompaniesarebothsmallerandmoredependentonthesuccessoftheAIproductsthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 与秋天有关的成语课件
- 不等式课件教学课件
- 云南师范大学《环境导视系统设计》2023-2024学年第二学期期末试卷
- 上海工商外国语职业学院《声学基础》2023-2024学年第一学期期末试卷
- 邵阳职业技术学院《向量微积分》2023-2024学年第一学期期末试卷
- 内蒙古包头市青山区2025年初三年级校内模拟物理试题试卷(最后一卷)含解析
- 下载马工程配套课件
- 江南影视艺术职业学院《从分子观点了解生物学:结构生物学简介》2023-2024学年第二学期期末试卷
- 辽源职业技术学院《药物分析化学实验》2023-2024学年第二学期期末试卷
- 江西省抚州市南城县第一中学2025年高三下学期期中联考物理试题理试题含解析
- PLC在自动化生产线中的应用课件
- 第六单元《电的本领》单元教学设计(教学设计)-2023-2024学年四年级下册科学青岛版
- 超临界CO2印刷电路板式换热器流动与传热特性研究
- 《服务决定成败》课件
- 汽车产业智能化升级路径-深度研究
- 2025年金刚石工具项目可行性研究报告
- 医疗器械年度培训计划
- 《定投指数基金有效性的实证探析》17000字(论文)
- 门诊医疗技术操作规范
- 23年贵州省资格复审委托书
- 2025年河北省雄安新区事业单位招聘203人历年高频重点提升(共500题)附带答案详解
评论
0/150
提交评论