2022年人工智能行业研究:主要报告_第1页
2022年人工智能行业研究:主要报告_第2页
2022年人工智能行业研究:主要报告_第3页
2022年人工智能行业研究:主要报告_第4页
2022年人工智能行业研究:主要报告_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

March2023

ArtificialIntelligenceSectorStudy

ResearchreportfortheDepartment

forScience,Innovation&

Technology(DSIT)

Contents

IExecutiveSummary 2

1.Introduction 5

1.1.Methodology&Sources 5

1.2.Approach 5

1.3.InterpretationofData 6

1.4.Acknowledgements 7

2.UKArtificialIntelligenceSectorProfile 6

2.1.DefiningtheUKArtificialIntelligenceSector 6

2.2.NumberofUKAICompanies 8

3.LocationofUKAICompanies 17

3.1.AIActivitybyUKRegion 17

3.2.RegionalAIActivitybySector 18

3.3.InternationalActivity 19

4.EconomicContributionofUKAICompanies 22

4.1.EstimatedRevenue 22

4.2.EstimatedEmployment 26

4.3.EstimatedGrossValueAdded 30

4.4.SummaryofEconomicContribution 31

5.InvestmentinUKAICompanies 33

5.1.InvestmenttoDate 33

5.2.InvestmentMarketDynamics 41

6.FutureAISectorDevelopment 44

6.1.RecentSectorDevelopments 44

6.2.PotentialFutureSupport 45

6.3.SectorChallenges&Opportunities 46

6.4.FurtherSectorAnalysis,Monitoring&Evaluation 49

IExecutiveSummary

ThegovernmentcommissionedPerspectiveEconomics,glass.ai,IpsosandacademicexpertstoundertakearesearchstudytobetterunderstandtheprofileoftheUKAISectoranditscontributiontotheUKeconomy.Basedonacombinationofextensivecollectionandanalysisofsecondarydataandstrategicqualitativeresearchincludingasurveyof250UKAIbusinesses,and22in-depthinterviewswithAIbusinessesandstrategicstakeholders,thisreportprovidesabaselinesetofdataonthesizeandscaleoftheUK’sAIsector,intendedtosupportgovernment’songoingdevelopmentandmonitoringofkeyAIpolicies.

I.1HeadlineSectorMetrics

Thestudyhasidentifiedatotalof3,170UKAIcompaniesthatgenerated£10,6bninAIrelatedrevenues,employedmorethan50,000peopleinAIrelatedroles,generated£3.7bninGrossValueAddedandhavesecured£18.8bninprivateinvestmentsince2016.

FigureI.1–SectorHeadlines

I.2KeyFindings

ThereportprovidesfurtherbreakdownsofthesemetricsacrossUKregions,andaccordingtopredictedAIbusinessmodelsandtechnologicalcapabilities.Someofthemostsalientfindingsemergingfromthisbaselineresearchinclude:

•Atotalof3,170activeAIcompanieshavebeenidentifiedthroughthestudy.

•Ofthe3,170activecompaniesidentifiedthroughthestudy60%arededicatedAIbusinessesand40%arediversifiedi.e.,haveAIactivityaspartofabroaderdiversifiedproductorserviceoffer.

•Comparedtosimilarstudiesintootheremergingtechnologysectors,agreaterproportionofdiversifiedAIcompanieshavebeenidentified,highlightingthebroadscopefordevelopmentofAItechnologyapplicationsbyestablishedtechnologycompaniesacrosssectors.

•Onaverage269newAIcompanieshavebeenregisteredeachyearsince2011,withapeakinnewcompanyregistrationsinthesameyearastheAISectorDeal(2018,n=429).

•Together,thedataoncompanysizeandbusinessmodelsuggestthatdedicatedAIcompaniesarebothsmallerandmoredependentonAIproductsforrevenue.DiversifiedAIcompaniesaretypicallylargerandlikelytogenerateagreaterproportionofrevenuesfromlesscapital-intensiveprovisionofAIrelatedservices.

•London,theSouthEastandtheEastofEnglandaccountfor75%ofregisteredAIofficeaddresses,andalsofor74%oftradingaddresses.JustunderonethirdofAIcompanieswitharegisteredaddressoutsideofLondon,theSouthEastandtheEastofEnglandstillhaveatradingpresenceinthoseregions,highlightingtheapparentsignificanceofthoseregionstodevelopmentoftheUKAIsectortodate.

•Whileabsolutenumbersaresmaller,thestudyhasidentifiedmorenotableproportionsofwiderregionalAIactivityinautomotive,industrialautomation&machinery;energy,utilitiesandrenewables;health,wellbeingandmedicalpractice,andagriculturaltechnology.

•Inthemostrecentfinancialyear,annualrevenuesgeneratedspecificallyfromAIrelatedactivitybyUKAIcompaniestotalledanestimated£10.6billion,splitapproximately50/50betweendedicatedanddiversifiedcompanies.

•AcrossbothdedicatedanddiversifiedAIcompanies,studyestimatessuggestthatthereare50,040FullTimeEquivalents(FTEs)employedinAIrelatedroles,53%ofwhicharewithindedicatedAIcompanies.

•Basedonacombinationofofficialcompanydata,surveyresponsesandassociatedmodelling,AIcompaniesareestimatedtocontribute£3.7bninGVAtotheUKeconomy.ForlargecompaniestheGVA-to-turnoverratiois0.6:1(i.e.,forevery£1ofrevenue,largeAIcompaniesgenerate60pindirectGVA).GVA-to-turnoverratiosamongSMEsaremuchlower(0.2:1formediumsizedcompaniesandnegativeforsmallandmicrobusinesses),whichreflectsthecapitalintensive,highR&Dnatureofdeeptechnologydevelopment.

•Since2016,AIcompanieshavesecuredatotalof£18.8bninprivateinvestment.2021wasarecordyearforAIinvestment,withover£5bnraisedacross768deals,representing

anaveragedealsizeof£6.7m.Further,AIinvestmentincreasedalmostfive-foldbetween2019and2021.

•In2022dedicatedAIcompaniessecuredahigheraveragedealvaluethandiversifiedcompaniesforthefirsttime.However,dataonAIinvestmentbystageofevolutionmayalsobesignallingsometighteningofinvestmentavailabletoSeedandVentureStagecompaniesand,giventhesignificanceofprivateinvestmentforAItechnologydevelopmentevidencedbydataonrevenuesandGVA,thiscouldposearisktorealisingthepotentialwithinearly-stageAIcompanies.

•ThestudyhighlightedanotableopportunityforcompaniesoperatingintheAIimplementationspacetobuildteamsofAIimplementationexpertsthatcansupportAIadoptionopportunitiesacrosssectors.Thisadoptionopportunityissupportedbyinvestmentdata,whichhighlightsthatin2022investmentsweremadein52uniqueindustrysectors,comparedtoinvestmentsacrossjust35differentsectorsin2016.

1.Introduction

PerspectiveEconomics,incollaborationwithIpsos,glass.ai,andProfessorsRobProcter(UniversityofWarwick)andRogerWoods(Queen’sUniversityBelfast)werecommissionedinAugust2022todeliveranassessmentoftheUK’sartificialintelligence(AI)sector.

Theaimofthestudyistobetterunderstandthescale,profileandeconomiccontributionofUK’sAISector,andtoprovideabaselinesetofdatathatcansupportgovernment’songoingdevelopmentandmonitoringofkeyAIpolicies.

AItechnologieshavebeenindevelopmentfordecades,howevertheirtransformativepotentialisbeingincreasinglyrealisedthroughdevelopment,applicationandpublicdebateregardingevermoresophisticatedmachinelearningsoftware.ThisreportisthereforetimelygiventheimportanceofgovernmentpolicyregardingtheethicalandregulatoryparameterswithinwhichAItechnologiesaredevelopedandappliedintheUK.

1.1.Methodology&Sources

Thestudyhasbeendesignedtoprovideinsightintothefollowingsetofcoreresearchquestions:

•HowmuchdoestheUK’sAISectorcontributetotheUKeconomy,includingrevenue,employment,GrossValueAdded(GVA),exportsandR&Dspending?

•WhatisthecompositionoftheUK’sAIsector,intermsofbusinesssize,location,andproductoffering?

•Whathavebeenthedriversofgrowthinthemarket,andwhatarethekeyupcomingchallenges?

Itisanticipatedthattheresearchwillbereplicatedinsubsequentyearsandassuch,themethodologyfordatacollectionandanalysisiswhollytransparentandrepeatable.

1.2.Approach

Thestudyusesamixedmethodsapproach,combiningacademia,policyandinvestmentspheres.Keymethodologicalstepsaresummarisedbelow,withfullerdetailprovidedinappendicestothereport.

Stage1–Collationofinitialdatainputs:along-listofAIcompaniesdeemedtobepotentiallywithinthescopeofthestudywasidentifiedfromnumeroussources,predominantlyviawebintelligencegeneratedbyGlass.ai’sweb-readingcapabilities.JustunderonethirdofcompanieswerealsoidentifiedviaothersourcesincludingbutnotlimitedtoBureauvanDijk’sFAME,Beauhurst,Crunchbase,LightcastandFDIMarkets.

Stage2–Initialclassificationandfiltering:AsetofkeywordsandcategorieswereidentifiedthroughacombinationofautomatedclassificationusingGlass.ailanguagemodelsandworkshopsessionswithrepresentativesfromacademia,industry,governmentandthecore

studyteam.Thelong-listofpotentiallyin-scopefirmswasrefinedandfilteredtoprovideashortlistof3,170in-scopeAIcompanies.

Stage3–Surveydesignandadministration:adetailedbusinesssurveywasdesignedwithinputfromthestudysteeringgroup,includingrepresentativesfromDSITandacademicandcommercialresearchexpertise.Thesurveywasadministeredviamultiplechannels,includingviatelephone,e-mailandweb-hosting.Atotalof250responseswerereceived.

Stage4–Dataaugmentation:aseriesofmanualdataqualitycheckswereconductedacrosskeymetrics(revenue,employment,location,classification)byboththecorestudyteamandDSITanalysts.Companydatawasthenaugmentedusingmultipledatasources,providingaconsistentsetofkeymetricsforeachUKAIbusiness.

Figure1.1–Shortlisting&AugmentationOverview

Source:PerspectiveEconomics

Stage5–Regional&sub-sectoralanalysis:moregranulardataonthetradinglocationsofin-scopeAIcompanieswasgatheredthroughweb-intelligenceandproprietarydatasources,enablingamoredetailedanalysisofthetradingpresenceofUKAIcompanieslocally,andinternationally.

Stage6–Sectormodelling:Theshort-listedAIcompanysetwasusedtoproduceanalysesofthenumber,scaleandlocationofUKAIcompanies,incorporations,investment,R&Dexpenditureandexports.

Stage7–Qualitativeinterviews&casestudies:in-depthfollow-upinterviewswereconductedwith10AIcompaniesthatrespondedtothesurvey.Findingswerecombinedwiththosefrom10in-depthsemi-structuredstrategicstakeholderinterviewstoaddressqualitativeresearchquestionsregardingstrengths,weaknesses,opportunities,challengesandriskstotheUKAIsector.

Stage8–Analysis&reporting:findingsfromthequantitativeandqualitativeresearchweresynthesisedthroughsteeringgroupdiscussionsandqualitativeanalysissessionsandtriangulatedtoinformthisbaselinereport.

1.3.InterpretationofData

ArtificialIntelligenceactivityintheUKisnotdefinedbyaformalStandardIndustrialClassification(SIC)code1.ThisstudythereforeusesexperimentalmethodstoidentifyandquantifyAIactivityacrosstraditionaleconomicsectors.Theapproachandmethodologyare

1SICcodesarethecurrentsystemofclassifyingbusinessestablishmentsandotherstatisticalunitsbytypeofeconomicactivityinwhichtheyareengaged.

consistentwiththoseemployedtodeliveranalysesoftheUKcybersecuritysectorannuallysince20182.Thedatausedtoinformthestudyincludes:

•IdentificationofAIfirmsaccordingtoanagreedtaxonomyusingAIdrivenlanguagemodelsappliedacrosswebsites,news,socialmedia,academicandofficialsources.

•EnrichmentofwebdatausingopenandproprietarydatasourcesincludingCompaniesHouse(companyname,registrationnumber,locations,incorporationdate),BureauvanDijkFAME(revenue,employment,profitability,remuneration,R&Dspend)andBeauhurst(externalgrants,fundraisings,acceleratorattendance,M&Aactivity).

Acrossthisreport,percentagesfromthequantitativedatamaynotaddto100%duetoroundingand/ortheoptiontoselectmultipleresponsestocertainsurveyquestions.ItisalsoimportanttonotethatthesurveydataisbasedonasampleofAIcompaniesandarethereforesubjecttosamplingtolerances.Theoverallmarginoferrorforthesampleof250AIcompanies(withinapopulationof3,170companies)isbetweenc.3andc.6percentagepointsata95%confidencelevel.Thelowerendofthisrange(3percentagepoints)isusedforsurveyestimatescloserto10%or90%.Thehigherend(6percentagepoints)isusedforsurveyestimatesaround50%.Datafromthe22qualitativeconsultationsisintendedtobeillustrativeofthekeythemesaffectingAIactivityintheUKgenerally,ratherthanastatisticallyrepresentativeviewofAIsectorbusinessesorinvestors.

1.4.Acknowledgements

TheauthorswouldliketothanktheDSITteamfortheirsupportacrossthestudy.DSITandthereportauthorswouldalsoliketothankallthosewhocontributedtotheresearch,includingthosewhotookpartinin-depthstrategicstakeholderinterviews,respondedtothebusinesssurvey,orotherwiseofferedintelligenceandinsightstothestudy.

Note:Thisreportusesexperimentalmethodstodefine,scopeandmeasurethescale

oftheUK’sAIsector.Wethereforewelcomecommentsandfeedbackregardingthe

methodologyorfindingsherein,throughcontacting

digital-analysis-team@.uk

.

2DSIT(2022)CyberSecuritySectoralAnalysis2022,accessibleat[.uk/government/publications/cyber-security-sectoral-analysis-2022]

2.UKArtificialIntelligenceSectorProfile

TheNationalAIStrategydescribesArtificialIntelligence(AI)asthe“fastestgrowingdeeptechnologyintheworld,withhugepotentialtorewritetherulesofentireindustries,drivesubstantialeconomicgrowthandtransformallareasoflife”3.Recognisingchallenges,limitationsandquestionablevalueoftryingtotightlydefineAI,theAIregulationpolicypaper–Establishingapro-innovationapproachtoregulatingAI4–describesAIas“ageneral-purposetechnologylikeelectricity,theinternetandthecombustionengine.”ItdefinesthecorecharacteristicsofAIasthe‘adaptiveness’and‘autonomy’ofthetechnologyi.e.,thatAItechnologycanoperateonthebasisofinstructionswhichhavebeenlearntratherthanprogrammed,andthatcanbeautonomouslyappliedwithindynamicandfast-movingenvironments.

2.1.DefiningtheUKArtificialIntelligenceSector

TheanalysescontainedinthisreportarebasedonacommerciallyorientedtaxonomyofAIactivityintheUK.The‘commerciallyoriented’distinctionismadegiventhecommercialnatureofthelanguageusedtoinformthisstudy(drawnfromwebandtrade-baseddescriptionsofcompanyactivity),vis-à-vismoretechnicalterminologythatiscurrentlybeingusedinparallelactivitytobetterunderstandresearch-relatedtechnologicalAIdevelopments.Asdiscussedfurtheroverleaf,thestudysegmentscompaniesaccordingtoanagreedtaxonomy,includingadelineationbetween‘dedicated’and‘diversified’AIcompanies.Table2.1providesanillustrationofsomeofthemostprominentdedicatedanddiversifiedAIcompaniesidentified.

Table2.1–KeyAISectorContributors–Dedicated&Diversified

Dedicated

Diversified

1DeepMind

1FacebookUK

2

LimeJump

2

IBMUK

3LoopMe

3Microsoft

4

Peak

4

GoogleUK

5Ivefi.ai

5Accenture

6

Lendable

6

Amazon

7Deloitte

7EquippedAI

8

Improbable

8

Vodafone

9Cognizant

9Exscientia

10

Tractable

10

BT

Source:Glass.ai,PerspectiveEconomics

3DSIT(2021)NationalAIStrategy,DepartmentforScienceInnovation&Technology.

4.uk/government/publications/establishing-a-pro-innovation-approach-to-regulating-ai/establishing-a-pro-innovation-approach-to-regulating-ai-policy-statement

ThetaxonomyusedtodescribeAIactivityinthisstudyisillustratedinFigure2.1.SalientpointstonoteregardingthetaxonomyarediscussedbelowFigure2.1,andthefulltaxonomyisalsoavailabletoviewintheappendicestothisreport.

Figure2.1–UKAITaxonomy

Source:PerspectiveEconomics

Foreaseofreference,salientpointsregardingthesectortaxonomyinclude:

•Pre-requisitesforinclusion:TobeincludedinthestudycompaniesmustberegisteredandhaveanactivepresenceintheUK.

•DedicatedvsDiversifiedAIcompanies:atthehighestlevel,thetaxonomysegmentsthebusinesspopulationaccordingtowhethertheyareadedicatedAIcompany,orwhetherAIactivitymakesupasmallerproportionofamuchbroadercommercialbusinessoffering.DedicatedAIcompaniesareconsideredtobebusinessesthatprovideaproprietaryAItechnicalservice,product,platformorhardwareastheirprimaryrevenuesource.

•AIBusinessModel:atalowerlevelthetaxonomysegmentsbetweencreatorsofAIinfrastructure5,developersofAIproducts6andAIserviceproviders7.AdoptersofAIproductsorservicesdevelopedbyothersareconsideredtobeoutsidethescopeofthisstudytoavoiddoublecountingandtohelpensurethattheanalysisispredominantlyfocussedonvalueaddedtotheUKeconomybyAIsectoractivity.

5Includinghardware,frameworks,software,librariesandplatforms.

6Companiesproducingbespoke,valueaddingAIsolutionsmarketedandsoldasproducts.

7CompaniesofferingskillsandexpertisetosupporttheadoptionofAIproducts.

•AICapabilities:theanalysescontainedinthereportsegmentAIsectoractivityaccordingtothemaintechnologicalcapabilitythatunderpinsbusinessmodels.WhilemanyofthecompaniesidentifiedemploymultipleAIcapabilities,languagemodelswereadjustedtoidentifyboththeforemostAIcapability,aswellasallothercapabilitiesmentioned.MachineLearningisagenerictermthatunderpinsallothercapabilities.Itisincludedasacategoryherebecauseinmanyinstancesdescriptivecompanyinformation(thebasisofclassification)doesnotfurtherspecifytechnicalcapabilities.

•Industries:tosupportcomparativeanalyseswithSICbasedeconomicdataeachcompanyisalsoassignedtoasingleindustrywhichisderivedfromandcanbemappedbacktoSICCodes.

Inaddition,eachin-scopecompanyhasbeenclassifiedintoindustrysectorsusingGlass.ai’sproprietarytopicontologies.ThemostprominentindustrysectorsreferredtoinSection3arelistedbelowandasummaryofcompaniesassignedtobothGlass.aisectorsandStandardIndustrialClassification(SIC)codesareavailableintheappendices.

•ComputerSoftware

•InformationTechnologyandServices

•Biotechnology,LifeSciences&Pharma

•FinancialServices

•ProfessionalServices

•WiderHealth&MedicalPractice

•R&DandScientific

•Automotive,IndustrialAutomation&Machinery

•Energy,Utilities&Renewables

•AgriculturalTechnology

2.2.NumberofUKAICompanies

BasedonacombinationofAIdrivenwebintelligence,andcollationofcompanydatafromnumerousopenandproprietarysourcesincludingCompaniesHouse,BureauvanDijk,BeauhurstandLightcast,weestimatethattherearecurrently3,170activecompaniesintheUKprovidingAIinfrastructures,productsandservices.Aspreviouslystated,thisfocussesspecificallyonvalue-addedbytheAIsectoranddoesnotthereforeincludethewidervalueaddedbyadoptionofAItechnologiesacrossothersectors.

2.2.1.RegisteredCompaniesbySize

Ninety-sixpercentofthecompanies

identifiedareSMEs;60%ofall

companiesaremicrobusinesses

(Figure2.2).

Consultationwithstrategic

stakeholdersfromacrossindustry,

academiaandpolicyspheres

pointedtothepresenceofa

significantnumberoflarge

technologyfirmsasakeystrengthof

theUK’sAIecosystem,deemedto

beatleastinpartduetotheUK’s

reputationforhighqualityscientific

researchandinnovation.This

assertionissupportedbya

comparisonofthesizeofcompaniesin

theAIsectorvis-à-visthebroaderUKbusinesspopulation8(Table2.1).ThetablebelowevidencesthattheAIsectorhasagreaterconcentrationoflarge,mediumandsmallbusinessesthanthegeneralUKBusinesspopulation.

Table2.1–AISizeProfileComparison

Size

UKBusiness

Population

Estimates(2022)

Percentage

AISectoral

Analysis

Percentage

Large(250+

employees)

7,675

<1%

132

4%

Medium(50-249)

35,940

3%

262

8%

Small(10-49)

217,240

15%

887

28%

Micro(1-9)

1,187,045

82%

1,889

60%

AllBusinesseswithatleast1employee

1,447,900

100%

3,170

100%

Source:ONS,Glass.ai

8UKBusinessPopulationEstimates(2022):Availableat:

.uk/government/statistics/business-population-

estimates-2022

2.2.2.Dedicated&DiversifiedAICompanies

Ofthe3,170activecompaniesFigure2.3–DedicatedandDiversifiedAICompanies

identifiedthroughthestudy60%are

dedicatedAIbusinessesand40%are

diversified(i.e.,haveAIactivityas

partofabroaderdiversifiedproduct

orserviceoffer,Figure2.3).

Incomparisontoothersimilarstudies

theproportionofdiversified

companieswithintheAIsectoris

higher.Thisisindicativeofthe

comparativelybroadscopeforAI

technologyapplicationsacross

sectors,andpointstoanintense

focusondevelopmentofAI

technologyamongbothdedicated

companies(e.g.,DeepMind,Source:Glass.ai,PerspectiveEconomics(n=3,170)

Improbable,BenevolentAI)and

established,diversifiedtechnologycompanieswithmuchbroaderserviceoffers(e.g.,Amazon,Google,Microsoft,IBM)9.

Figure2.4overleafshowsthatmostlargeAIcompaniesarediversified(89%,n=118),whereasthemajorityofmicro-AIcompaniesarededicated,meaningthatAIiscoretotheirbusinessmodel(68%,n=1,288).

9Itisworthnotingherethat,giventhebreadthandvaryingscaleofAIactivity,itisnotpossibletodelineatededicatedanddiversifiedAIfirmssolelyonthebasisoftheproportionofAIrelatedrevenueoremploymentwithincompanies.CompanieswithrelativelysmallAIteamscanbededicatedAIcompaniesandbythesametoken,companieswithlargeAIteamscanbediversified.Thereforeinstead,thestudyusedacombinationofdataonAIrelatedemploymentandadetailedmanualreviewofcompanydescriptionsasthebasisoffinaldecisionsonwhetherornotacompanyfallsintothededicatedordiversifiedcategory.

Figure2.4–AICompanySize

Source:Glass.ai,PerspectiveEconomics(n=3,170)

2.2.3.AICompanyRegistrations

AnalysisofincorporationdatesacrossthepopulationofAIcompaniesshowssignificantgrowthinAIcompanyregistrationssince2011.Onaverage,269newAIcompanieshavebeenregisteredeachyearsince2011,withapeakinnewcompanyregistrationsinthesameyearastheAISectorDeal(2018,n=429)andsmallernumbersofnewcompanyregistrationssince(Figure2.5overleaf)10.

10Analysisexcludes2022duetodatagapsassociatedwiththenormallaginavailabilityofcompanydata.

Figure2.5–AICompanyRegistrations

Source:PerspectiveEconomics,Glass.ai,CompaniesHouse(1998–2021|n=3,030

companiesincorporatedsince1998)

2.2.4.PredictedAIBusinessModel

ThetaxonomycanbeusedtobetterunderstandtheprofileoftheAIsectoraccordingtothebroadfocusofAIactivity(i.e.,infrastructure,productsorservices)andatalower-level,categorisationofthecorecapabilityofin-scopecompanies.Figure2.6overleafpresentsthetwomaintaxonomylevelsasanexcerptforeaseofreference.Analysesthatfollowfocusonthebusinessmodelsandcapabilitiesofcompaniesincludedinthefinaldataset.EachcompanyisassignedtoasinglebusinessmodelandcapabilitybasedonthehighestprobablecategorisationusingthelanguagemodelsdevelopedbyGlass.ai.

Figure2.6–AIBusinessModels&Capabilities

Source:Glass.ai,TaxonomyWorkshopOutputs

Acrosstheentirepopulation82%ofcompaniesfallwithinthebusinessmodelcategoriesofAIproductsandinfrastructures(72%and11%respectively),withtheremaining18%engagedpredominantlyinprovidingAI-relatedservices11.AgreaterproportionofdedicatedAIcompaniesprimarilyproduceAIrelatedproducts(75%ofdedicatedcompaniescomparedto66%ofdiversifiedcompanies).Together,thedataoncompanysizeandbusinessmodelsuggestthatdedicatedAIcompaniesarebothsmallerandmoredependentonthesuccessoftheAIproductsthe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论