青海省西宁市二十一中2022-2023学年数学高一第二学期期末联考模拟试题含解析_第1页
青海省西宁市二十一中2022-2023学年数学高一第二学期期末联考模拟试题含解析_第2页
青海省西宁市二十一中2022-2023学年数学高一第二学期期末联考模拟试题含解析_第3页
青海省西宁市二十一中2022-2023学年数学高一第二学期期末联考模拟试题含解析_第4页
青海省西宁市二十一中2022-2023学年数学高一第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,集合,则A. B. C. D.2.已知数列满足,且,其前n项之和为,则满足不等式的最小整数n是()A.5 B.6 C.7 D.83.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.4.某型号汽车使用年限与年维修费(单位:万元)的统计数据如下表,由最小二乘法求得回归方程.现发现表中有一个数据看不清,推测该数据的值为()使用年限维修费A. B.C. D.5.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝石和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的分别为()A.90,86 B.98,78 C.94,82 D.102,746.若是2与8的等比中项,则等于()A. B. C. D.327.已知函数(其中),对任意实数a,在区间上要使函数值出现的次数不少于4次且不多于8次,则k值为()A.2或3 B.4或3 C.5或6 D.8或78.若三个球的半径的比是1:2:3,则其中最大的一个球的体积是另两个球的体积之和的()倍.A.95 B.2 C.529.设等差数列{an}的前n项和为Sn.若a1+a3=6,S4=16,则a4=()A.6 B.7 C.8 D.910.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,在轴、轴正方向上的投影分别是、,则与同向的单位向量是__________.12.已知向量,,则与的夹角等于_______.13.设等比数列的前项和为,若,,则的值为______.14.(如下图)在正方形中,为边中点,若,则__________.15.在公比为q的正项等比数列{an}中,a3=9,则当3a2+a4取得最小值时,=_____.16.如果是奇函数,则=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,为坐标原点,三点满足.(1)求证:三点共线;(2)已知的最小值为,求实数的值.18.已知函数,其中数列是公比为的等比数列,数列是公差为的等差数列.(1)若,,分别写出数列和数列的通项公式;(2)若是奇函数,且,求;(3)若函数的图像关于点对称,且当时,函数取得最小值,求的最小值.19.已知关于的不等式.(1)当时,解上述不等式.(2)当时,解上述关于的不等式20.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为万元,求和;(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元,求和;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?21.已知是定义域为R的奇函数,当时,.Ⅰ求函数的单调递增区间;Ⅱ,函数零点的个数为,求函数的解析式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先求出集合A,由此能求出∁UA.【详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【点睛】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2、C【解析】

首先分析题目已知3an+1+an=4(n∈N*)且a1=9,其前n项和为Sn,求满足不等式|Sn﹣n﹣6|<的最小整数n.故可以考虑把等式3an+1+an=4变形得到,然后根据数列bn=an﹣1为等比数列,求出Sn代入绝对值不等式求解即可得到答案.【详解】对3an+1+an=4变形得:3(an+1﹣1)=﹣(an﹣1)即:故可以分析得到数列bn=an﹣1为首项为8公比为的等比数列.所以bn=an﹣1=8×an=8×+1所以|Sn﹣n﹣6|=解得最小的正整数n=7故选C.【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列an﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.3、B【解析】

先根据斜二测画法的性质求出原图形,再分析绕AB所在直线旋转一周后形成的几何体的表面积即可.【详解】根据斜二测画法的性质可知,原是以为底,高为的等腰三角形.又.故为边长为2的正三角形.则绕AB所在直线旋转一周后形成的几何体可看做两个以底面半径为,高为的圆锥组合而成.故表面积为.故选:B【点睛】本题主要考查了斜二测画法还原几何图形与旋转体的侧面积求解.需要根据题意判断出旋转后的几何体形状再用公式求解.属于中档题.4、C【解析】

设所求数据为,计算出和,然后将点代入回归直线方程可求出的值.【详解】设所求数据为,则,,由于回归直线过样本的中心点,则有,解得,故选:C.【点睛】本题考查利用回归直线计算原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.5、B【解析】(1);(2);(3);(4),输出分别为98,78。故选B。6、B【解析】

利用等比中项性质列出等式,解出即可。【详解】由题意知,,∴.故选B【点睛】本题考查等比中项,属于基础题。7、A【解析】

根据题意先表示出函数的周期,然后根据函数值出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于的不等式,从而得到的范围,结合,得到答案.【详解】函数,所以可得,因为在区间上,函数值出现的次数不少于4次且不多于8次,所以得即与的图像在区间上的交点个数大于等于4,小于等于8,而与的图像在一个周期内有2个,所以,即解得,又因,所以得或者,故选:A.【点睛】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.8、D【解析】

设最小球的半径为R,根据比例关系即可得到另外两个球的半径,再利用球的体积公式表示出三个球的体积,即可得到结论。【详解】设最小球的半径为R,由三个球的半径的比是1:2:3,可得另外两个球的半径分别为2R,3R;∴最小球的体积V1=43π∴V故答案选D【点睛】本题主要考查球体积的计算公式,属于基础题。9、B【解析】

利用等差数列的性质对已知条件进行化简,由此求得的值.【详解】依题意,解得.故选:B【点睛】本小题主要考查等差中项的性质,属于基础题.10、A【解析】

直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意得出,再利用单位向量的定义即可求解.【详解】由在轴、轴正方向上的投影分别是、,可得,所以与同向的单位向量为,故答案为:【点睛】本题考查了向量的坐标表示以及单位向量的定义,属于基础题.12、【解析】

由已知向量的坐标求得两向量的模及数量积,代入数量积求夹角公式得答案.【详解】∵(﹣1,),(,﹣1),∴,,则cos,∴与的夹角等于.故答案为:.【点睛】本题考查平面向量的数量积运算,考查了由数量积求向量的夹角,是基础题.13、16【解析】

利用及可计算,从而可计算的值.【详解】因为,故,因为,故,故,故填16.【点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.14、【解析】∵,根据向量加法的三角形法则,得到∴λ=1,.则λ+μ=.故答案为.点睛:此题考查的是向量的基本定理及其分解,由条件知道,题目中要用和,来表示未知向量,故题目中要通过正方形的边长和它特殊的直角,来做基底,表示出要求的向量,根据平面向量基本定理,系数具有惟一性,得到结果.15、【解析】

利用等比数列的性质,结合基本不等式等号成立的条件,求得公比,由此求得的值.【详解】∵在公比为q的正项等比数列{an}中,a3=9,根据等比数列的性质和基本不等式得,当且仅当,即,即q时,3a2+a4取得最小值,∴log3q=log3.故答案为:【点睛】本小题主要考查等比数列的性质,考查基本不等式的运用,属于基础题.16、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析;(2)【解析】试题分析:(1)只需证得即可。(2)由题意可求得的解析式,利用换元法转换成,讨论的单调性,可知其在上为单调减函数,得可解得的值。(1)证明:三点共线.(2),,令,其对称轴方程为在上是减函数,。点睛:证明三点共线的方法有两种:一、求出其中两点所在直线方程,验证第三点满足直线方程即可;二、任取两点构造两个向量,证明两向量共线即可。在考试中经常采用第二种方法,便于计算。证明四点共线一般采用第一种方法。18、(1),;(2);(3)1【解析】

(1)根据等差数列、等比数列的通项公式即可求解;(2)根据奇函数的定义得出,化简得,解方程可得(3)将化成的形式,依题意有,从而得到,因为当时,函数取得最小值,所以,两式相减即可求解.【详解】(1)由等差数列、等比数列的通项公式可得,;(2)因为,所以即,所以又由,得(3)记,则,其中;因为的图像关于点对称,所以①因为当时,函数取得最小值,所以②②-①得,因为,当,时,取得最小值为0【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.19、(1).(2)当时,解集为,当时,解集为,当时,解集为或【解析】

(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对分类讨论,即可由零点大小确定不等式的解集.【详解】(1)当时,代入可得,解不等式可得,所以不等式的解集为.(2)关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【点睛】本题考查了一元二次不等式的解法,含参数分类讨论的应用,属于基础题.20、(1),(2),(3)至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【解析】

(1)利用等差数列、等比数列的通项公式求和(2)是数列的前项和,是数列的前项和减去600,利用等差数列和等比数列的前项和公式求出即可(3)作差,利用函数的单调性,即可得出结论【详解】(1)由题意得是等差数列,所以由题意得所以所以是首项为250,公比为的等比数列所以所以(2)是数列的前项和所以是数列的前项和减去600,所以(3)易得此函数当时单调递增且时时所以至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【点睛】本题考查的是数列的综合知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论