福建省安溪第六中学2023年数学高一第二学期期末教学质量检测试题含解析_第1页
福建省安溪第六中学2023年数学高一第二学期期末教学质量检测试题含解析_第2页
福建省安溪第六中学2023年数学高一第二学期期末教学质量检测试题含解析_第3页
福建省安溪第六中学2023年数学高一第二学期期末教学质量检测试题含解析_第4页
福建省安溪第六中学2023年数学高一第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的终边经过点,则A. B. C. D.2.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)4.已知锐角满足,则()A. B. C. D.5.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π6.过点斜率为-3的直线的一般式方程为()A. B.C. D.7.如图所示四棱锥的底面为正方形,平面则下列结论中不正确的是()A. B.平面C.直线与平面所成的角等于30° D.SA与平面SBD所成的角等于SC与平面SBD所成的角8.已知直线的倾斜角为,且过点,则直线的方程为()A. B. C. D.9.设等差数列的前项和为,,,则()A. B. C. D.10.已知x,x134781016y57810131519则线性回归方程y=A.(8,10) B.(8,11) C.(7,10) D.(7,11)二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,当时,,则是否存在不小于2的正整数,使成立?若存在,则在横线处直接填写的值;若不存在,就填写“不存在”_______.12.在明朝程大位《算术统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说“宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?”根据上述条件,从上往下数第二层有___________盏灯.13.平面⊥平面,,,,直线,则直线与的位置关系是___.14.已知数列满足,,则_______;_______.15.不等式的解集是.16.已知函数(,)的部分图像如图所示,则函数解析式为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,满足,,且.(1)求;(2)在中,若,,求.18.如图,在平面直角坐标系中,点,,锐角的终边与单位圆O交于点P.(Ⅰ)当时,求的值;(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M坐标;若不存在,说明理由.19.如图,在三棱柱中,底面,,,,分别为的中点,为侧棱上的动点(Ⅰ)求证:平面平面;(Ⅱ)若为线段的中点,求证:平面;(Ⅲ)试判断直线与平面是否能够垂直.若能垂直,求的值;若不能垂直,请说明理由20.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.21.设.(1)若不等式对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.2、B【解析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.3、A【解析】

由题意可得,,求解即可.【详解】,解得或,故解集为(-,0)(1,+),故选A.【点睛】本题考查了分式不等式的解法,考查了计算能力,属于基础题.4、D【解析】

根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【详解】,又,即本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.5、B【解析】

根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.6、A【解析】

由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.7、C【解析】

根据空间中垂直关系的判定和性质,平行关系的判定和性质,以及线面角的相关知识,对选项进行逐一判断即可.【详解】对A:因为底面ABCD为正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正确;对B:因为底面ABCD为正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正确.对C:由A中推导可知AC平面SBD,故取AC与BD交点为O,连接SO,如图所示:则即为所求线面角,但该三角形中边长关系不确定,故线面角的大小不定,故C错误;对D:由AC平面SBD,故取AC与BD交点为O,连接SO,则即为SA和SC与平面SBD所成的角,因为,故,故D正确.综上所述,不正确的是C.故选:C.【点睛】本题综合考查线面垂直的性质和判定,线面平行的判定,线面角的求解,属综合基础题.8、B【解析】

根据倾斜角的正切值为斜率,再根据点斜式写出直线方程,化为一般式即可.【详解】因为直线的倾斜角为,故直线斜率.又直线过点,故由点斜式方程可得整理为一般式可得:.故选:B.【点睛】本题考查直线方程的求解,涉及点斜式,属基础题.9、A【解析】

利用等差数列的基本量解决问题.【详解】解:设等差数列的公差为,首项为,因为,,故有,解得,,故选A.【点睛】本题考查了等差数列的通项公式与前项和公式,解决问题的关键是熟练运用基本量法.10、D【解析】

先计算x,【详解】x=线性回归方程y=a+故答案选D【点睛】本题考查了回归方程,回归方程一定过数据中心点.二、填空题:本大题共6小题,每小题5分,共30分。11、70【解析】

构造数列,两式与相减可得数列{}为等差数列,求出,让=0即可求出.【详解】设两式相减得又数列从第5项开始为等差数列,由已知易得均不为0所以当n=70的时候成立,故答案填70.【点睛】如果递推式中出现和的形式,比如,可以尝试退项相减,即让取后,两式作差,和的部分因为相减而抵消,剩下的就好算了。12、6.【解析】

根据题意可将问题转化为等比数列中,已知和,求解的问题;利用等比数列前项和公式可求得,利用求得结果.【详解】由题意可知,每层悬挂的红灯数成等比数列,设为设第层悬挂红灯数为,向下依次为且即从上往下数第二层有盏灯本题正确结果;【点睛】本题考查利用等比数列前项和求解基本量的问题,属于基础题.13、【解析】

利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【点睛】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.14、【解析】

令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【点睛】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.15、【解析】

因为,且抛物线开口方向向上,所以,不等式的解集是.16、y=sin(2x+).【解析】

由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值答案可求【详解】根据函数y=sin(ωx+φ)(ω>0,0<φ)的部分图象,可得A=1,•,∴ω=2,再结合五点法作图可得2•φ=π,∴φ,则函数解析式为y=sin(2x+)故答案为:y=sin(2x+).【点睛】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值难度中档.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量的夹角,向量的加减计算,意在考查学生的计算能力.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)设点,求得向量的坐标,根据向量的数量积的运算,求得,即可求得答案.(Ⅱ)设M点的坐标为,把恒成立问题转化为恒成立,列出方程组,即可求解.【详解】(Ⅰ),,(Ⅱ)设M点的坐标为,则,,,.【点睛】本题主要考查了向量的坐标运算,以及向量的数量积的应用和恒成立问题的求解,其中解答中合理利用向量的坐标运算及向量的数量积的运算,以及转化等式的恒成立问题,列出相应的方程组是解答的关键,着重考查了推理与运算能力.19、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)直线BC1与平面APM不能垂直,详见解析【解析】

(Ⅰ)由等腰三角形三线合一得;由线面垂直性质可得;根据线面垂直的判定定理知平面;由面面垂直判定定理证得结论;(Ⅱ)取中点,可证得,;利用线面平行判定定理和面面平行判定定理可证得平面平面;根据面面平行性质可证得结论;(Ⅲ)假设平面,由线面垂直性质可知,利用相似三角形得到,从而解得长度,可知满足垂直关系时,不在棱上,则假设错误,可得到结论.【详解】(Ⅰ),为中点平面,平面又平面平面,平面又平面平面平面(Ⅱ)取中点,连接分别为的中点且四边形为平行四边形又平面,平面平面分别为的中点又分别为的中点又平面,平面平面平面,平面平面又平面平面(Ⅲ)假设平面,由平面得:设,当时,∽由已知得:,,,解得:假设错误直线与平面不能垂直【点睛】本题考查立体几何中面面垂直、线面平行关系的证明、存在性问题的求解;涉及到线面垂直的判定与性质、线面平行的判定、面面平行的判定与性质定理的应用;处理存在性问题时,常采用假设法,通过假设成立构造方程,判断是否满足已知要求,从而得到结论.20、(1)(2)3≤x≤1.【解析】试题分析:(1)利用两角差的正切公式建立函数关系式,根据基本不等式求最值,最后根据正切函数单调性确定最大时取法,(2)利用两角差的正切公式建立等量关系式,进行参变分离得,再根据a的范围确定范围,最后解不等式得的取值范围.试题解析:(1)当时,过作的垂线,垂足为,则,且,由已知观察者离墙米,且,则,所以,,当且仅当时,取“”.又因为在上单调增,所以,当观察者离墙米时,视角最大.(2)由题意得,,又,所以,所以,当时,,所以,即,解得或,又因为,所以,所以的取值范围为.21、(1)(2)见解析【解析】

(1)由不等式对于一切实数恒成立等价于对于一切实数恒成立,利用二次函数的性质,即可求解,得到答案.(2)不等式化为,根据一元二次不等式的解法,分类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论