版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示,则5个剩余分数的方差为()A. B. C.36 D.2.圆心在(-1,0),半径为的圆的方程为()A. B.C. D.3.在正方体中,与所成的角为()A.30° B.90° C.60° D.120°4.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.5.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.56.已知圆,由直线上一点向圆引切线,则切线长的最小值为()A.1 B.2 C. D.7.已知函数的最大值为,最小值为,则的值为()A. B. C. D.8.已知数列的前项和,那么()A.此数列一定是等差数列 B.此数列一定是等比数列C.此数列不是等差数列,就是等比数列 D.以上说法都不正确9.函数的单调减区间为A.B.C.D.10.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线的交点为,则________.12.已知中,,且,则面积的最大值为__________.13.已知等比数列的前项和为,,则的值是__________.14.过点作圆的切线,则切线的方程为_____.15.若,且,则的最小值为_______.16.已知数列满足且,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量.(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.18.已知.(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)求函数在时的值域.19.某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.20.已知数列中,.(1)求证:是等比数列,求数列的通项公式;(2)已知:数列,满足①求数列的前项和;②记集合若集合中含有个元素,求实数的取值范围.21.如图,四棱锥,平面ABCD,四边形ABCD是直角梯形,,,,E为PB中点.(1)求证:平面PCD;(2)求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由剩余5个分数的平均数为21,据茎叶图列方程求出x=4,由此能求出5个剩余分数的方差.【详解】∵将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为21,∴由茎叶图得:得x=4,∴5个分数的方差为:S2故选B【点睛】本题考查方差的求法,考查平均数、方差、茎叶图基础知识,考查运算求解能力,考查数形结合思想,是基础题.2、A【解析】
根据圆心和半径可直接写出圆的标准方程.【详解】圆心为(-1,0),半径为,则圆的方程为故选:A【点睛】本题考查圆的标准方程的求解,属于简单题.3、C【解析】
把异面直线与所成的角,转化为相交直线与所成的角,利用为正三角形,即可求解.【详解】连结,则,所以相交直线与所成的角,即为异面直线与所成的角,连结,则是正三角形,所以,即异面直线与所成的角,故选C.【点睛】本题主要考查了空间中异面直线及其所成角的求法,其中根据异面直线的定义,把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】设直径的两个端点分别A(a,2)、B(2,b),圆心C为点(-1,1),由中点坐标公式得解得a=-4,b=1.∴半径r=∴圆的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故选C.5、B【解析】
根据三角函数的定义建立方程关系即可.【详解】因为角的终边经过点且,所以则解得【点睛】本题主要考查三角函数的定义的应用,应注意求出的b为正值.6、A【解析】
将圆的方程化为标准方程,找出圆心坐标与半径,求出圆心到直线的距离,利用切线的性质及勾股定理求处切线长的最小值,即可得到答案.【详解】将圆化为标准方程,得,所以圆心坐标为,半径为,则圆心到直线的距离为,所以切线长的最小值为,故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的标准方程,点到直线的距离公式,以及数形结合思想的应用,属于基础题.7、B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.8、D【解析】
利用即可求得:,当时,或,对赋值2,3,选择不同的递推关系可得数列:1,3,-3,…,问题得解.【详解】因为,当时,,解得,当时,,整理有,,所以或若时,满足,时,满足,可得数列:1,3,-3,…此数列既不是等差数列,也不是等比数列故选D【点睛】本题主要考查利用与的关系求,以及等差等比数列的判定.9、A【解析】
根据正弦函数的单调递减区间,列出不等式求解,即可得出结果.【详解】的单调减区间为,,解得函数的单调减区间为.故选A.【点睛】本题主要考查三角函数的单调性,熟记正弦函数的单调区间即可,属于常考题型.10、B【解析】
直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
(2,2)为直线和直线的交点,即点(2,2)在两条直线上,分别代入直线方程,即可求出a,b的值,进而得a+b的值。【详解】因为直线与直线的交点为,所以,,即,,故.【点睛】本题考查求直线方程中的参数,属于基础题。12、【解析】
先利用正弦定理求出c=2,分析得到当点在的垂直平分线上时,边上的高最大,的面积最大,利用余弦定理求出,最后求面积的最大值.【详解】由可得,由正弦定理,得,故,当点在的垂直平分线上时,边上的高最大,的面积最大,此时.由余弦定理知,,即,故面积的最大值为.故答案为【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.13、1【解析】
根据等比数列前项和公式,由可得,通过化简可得,代入的值即可得结果.【详解】∵,∴,显然,∴,∴,∴,∴,故答案为1.【点睛】本题主要考查等比数列的前项和公式,本题解题的关键是看出数列的公比的值,属于基础题.14、或【解析】
求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【点睛】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.15、【解析】
将变换为,展开利用均值不等式得到答案.【详解】若,且,则时等号成立.故答案为【点睛】本题考查了均值不等式,“1”的代换是解题的关键.16、【解析】
由题得为等差数列,得,则可求【详解】由题:为等差数列且首项为2,则,所以.故答案为:2550【点睛】本题考查等差数列的定义,准确计算是关键,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)化简得=,利用周期的公式和正弦型函数的性质,即可求解;(Ⅱ)由,可得,得到∈,即可求得函数的值域.【详解】(Ⅰ)由题意,化简得=,所以函数的最小正周期为,又由,解得所以的单调递增区间为.(Ⅱ)由,可得,所以∈,所以的值域为.【点睛】本题主要考查了三角函数的的图象与性质的应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)男、女同学的人数分别为3人,1人;(2);(3)第二位同学的实验更稳定,理由见解析【解析】
(1)设有名男同学,利用抽样比列方程即可得解(2)列出基本事件总数为12,其中恰有一名女同学的有6种,利用古典概型概率公式计算即可(3)计算出两位同学的实验数据的平均数和方差,问题得解【详解】(1)设有名男同学,则,∴,∴男、女同学的人数分别为3人,1人(2)把3名男同学和1名女同学记为,则选取两名同学的基本事件有,,,,,,,,,,,共12种,其中恰有一名女同学的有6种,∴选出的两名同学中恰有一名女同学的概率为(3),,因,所以第二位同学的实验更稳定.【点睛】本题主要考查了分层抽样比例关系及古典概型概率计算公式,还考查了样本数据的平均数及方差计算,考查方差与稳定性的关系,属于中档题20、(1)证明见解析,(2)①②【解析】
(1)计算得到:得证.(2)①计算的通项公式为,利用错位相减法得到.②将代入集合M,化简并分离参数得,确定数列的单调性,根据集合中含有个元素得到答案.【详解】(1),为等比数列,其中首项,公比为.所以,.(2)①数列的通项公式为①②①-②化简后得.②将代入得化简并分离参数得,设,则易知由于中含有个元素,所以实数要小于等于第5大的数,且比第6大的数大.,,综上所述.【点睛】本题考查了数列的证明,数列的通项公式,错位相减法,数列的单调性,综合性强计算量大,意在考查学生的计算能力和综合应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牙齿发黑的临床护理
- 关于进一步营造园区亲商环境的对策建议
- 妊娠合并卵巢肿瘤的健康宣教
- 悬雍垂过长的健康宣教
- 不动杆菌细菌感染的临床护理
- JJF(陕) 040-2020 水泥比长仪校准规范
- 《操作系统用户界面》课件
- 小班身体协调能力的培养计划
- 提升班级文艺素养的活动规划计划
- 2024-2025学年年七年级数学人教版下册专题整合复习卷28.2 解直角三角形(一)同步测控优化训练(含答案)
- 青海省西宁市2023-2024学年九年级上学期期末英语试题
- 抖音团播行业报告
- 乐高-人形机器人搭建(图1)
- 专题8-5条件概率与全概率公式贝叶斯公式8类题型
- 基于ABB工业机器人自动化搬运工作站的设计
- 电子竞技2024年电子竞技产业的新崛起
- 广东省广州市黄埔区2023-2024学年八年级上学期期末生物试卷+
- 山东省青岛实验学校2023-2024学年七年级上学期期末数学试题
- 商业伦理期末复习
- 工地项目现场标准、规范、图集台账(现场检查用规范)全套
- 公园园区安保服务方案
评论
0/150
提交评论