版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列{an}的前n项之和为Sn,若A.45 B.54C.63 D.272.已知,,,则,,的大小关系为()A. B. C. D.3.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.304.如图是某体育比赛现场上评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别是()A.5和1.6 B.85和1.6 C.85和0.4 D.5和0.45.一个钟表的分针长为,经过分钟,分针扫过图形的面积是()A. B. C. D.6.若,满足,则的最大值为().A. B. C. D.7.已知点,点是圆上任意一点,则面积的最大值是()A. B. C. D.8.在数列中,若,,,设数列满足,则的前项和为()A. B. C. D.9.从一批产品中取出三件产品,设事件为“三件产品全不是次品”,事件为“三件产品全是次品”,事件为“三件产品不全是次品”,则下列结论正确的是()A.事件与互斥 B.事件与互斥C.任何两个事件均互斥 D.任何两个事件均不互斥10.已知数列满足,则()A.10 B.20 C.100 D.200二、填空题:本大题共6小题,每小题5分,共30分。11.直线的倾斜角为______.12.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.13.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.14.已知,则的最小值是__________.15.函数的定义域为________16.己知函数,有以下结论:①的图象关于直线轴对称②在区间上单调递减③的一个对称中心是④的最大值为则上述说法正确的序号为__________(请填上所有正确序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角的对边为,(1)求;(2)若求.18.如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.(1)证明:平面.(2)若三棱锥的体积为4,求点到平面的距离.19.已知向量,,.(1)求函数的最小正周期及单调递减区间;(2)记的内角的对边分别为.若,,求的值.20.如图,在中,点在边上,为的平分线,.(1)求;(2)若,,求.21.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由等差数列的性质,可知a1【详解】由等差数列的性质,可知a1又由等差数列的前n项和公式,可得S9【点睛】本题主要考查了等差数列的性质,以及前n项和公式的应用,其中解答中熟记等差数列的性质,以及利用等差数列的求和公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.2、D【解析】
利用指数函数、对数函数的单调性直接求解.【详解】解:因为,,所以,,的大小关系为.故选:D.【点睛】本题考查三个数的大小比较,考查指数函数、对数函数的单调性等基础知识,属于基础题.3、C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.4、B【解析】
去掉最低分分,最高分分,利用平均数的计算公式求得,利用方差公式求得.【详解】去掉最低分分,最高分分,得到数据,该组数据的平均数,.【点睛】本题考查从茎叶图中提取信息,并对数据进行加工和处理,考查基本的运算求解和读图的能力.5、B【解析】
分析题意可知分针扫过图形是扇形,要求这个扇形的面积需要得到扇形的圆心角和半径,再代入扇形的面积公式计算即可.【详解】经过35分钟,分针走了7个大格,每个大格则分钟走过的度数为钟表的分针长为10分针扫过图形的面积是故选【点睛】本题主要考查了求扇形面积,结合公式需要求出扇形的圆心角和半径,较为基础6、D【解析】作出不等式组,所表示的平面区域,如图所示,当时,可行域为四边形内部,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,此时,,当时,可行域为三角形,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,,综上,的最大值为.故选.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.注意解答本题时不要忽视斜率不存在的情形.7、B【解析】
求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线的距离的最大值为,因此,面积的最大值为,故选B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.8、D【解析】
利用等差中项法得知数列为等差数列,根据已知条件可求出等差数列的首项与公差,由此可得出数列的通项公式,利用对数与指数的互化可得出数列的通项公式,并得知数列为等比数列,利用等比数列前项和公式可求出.【详解】由可得,可知是首项为,公差为的等差数列,所以,即.由,可得,所以,数列是以为首项,以为公比的等比数列,因此,数列的前项和为,故选D.【点睛】本题考查利用等差中项法判断等差数列,同时也考查了对数与指数的互化以及等比数列的求和公式,解题的关键在于结合已知条件确定数列的类型,并求出数列的通项公式,考查运算求解能力,属于中等题.9、B【解析】
根据互斥事件的定义,逐个判断,即可得出正确选项.【详解】为三件产品全不是次品,指的是三件产品都是正品,为三件产品全是次品,为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:与是互斥事件;与是包含关系,不是互斥事件;与是互斥事件,故选B.【点睛】本题主要考查互斥事件定义的应用.10、C【解析】
由题可得数列是以为首相,为公差的等差数列,求出数列的通项公式,进而求出【详解】因为,所以数列是以为首项,为公差的等差数列,所以,则【点睛】本题考查由递推公式证明数列是等差数列以及等差数列的通项公式,属于一般题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求得直线的斜率,进而求得直线的倾斜角.【详解】由于直线的斜率为,故倾斜角为.【点睛】本小题主要考查由直线一般式方程求斜率,考查斜率和倾斜角的对应关系,属于基础题.12、【解析】正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.13、【解析】
试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.14、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.15、【解析】
根据反余弦函数的定义,可得函数满足,即可求解.【详解】由题意,根据反余弦函数的定义,可得函数满足,解得,即函数的定义域为.故答案为:【点睛】本题主要考查了反余弦函数的定义的应用,其中解答中熟记反余弦函数的定义,列出不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.16、②④【解析】
根据三角函数性质,逐一判断选项得到答案.【详解】,根据图像知:①的图象关于直线轴对称,错误②在区间上单调递减,正确③的一个对称中心是,错误④的最大值为,正确故答案为②④【点睛】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由题目中告诉的,利用正弦定理则可得到,再结合余弦定理公式求出角的值.(2)根据第一问求得的的值和题目中告诉的角的值可求得角的值,再利用正弦定理可求得边和的值.【详解】(1)由正弦定理,得,由余弦定理,得,又所以.(2)由(1)知:,又所以,又,根据正弦定理,得,,所以【点睛】本题考查利用正余弦定理求解边与角.18、(1)见解析(2)6【解析】
(1)由平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行可判定平面;(2)由三棱锥的体积为4,可知四棱锥的体积,再由三棱锥的体积公式即可求得高.【详解】(1)证明:连接,与交于点,连接.因为侧面是平行四边形,所以点是的中点.因为点是棱的中点,所以.因为平面,平面,所以平面.(2)解:因为三棱锥的体积为4,所以三棱柱的体积为12,则四棱锥的体积为.因为侧面是边长为2的正方形,所以侧面的面积为.设点到平面的距离为,则,解得.故点到平面的距离为6.【点睛】本题考查直线平行平面的判定和用三棱锥体积公式求点到平面的距离.19、(1)最小正周期为,单调递减区间为;(2)或【解析】
(1)由向量的数量积的运算公式和三角恒等变换的公式化简可得,再结合三角函数的性质,即可求解.(2)由(1),根据,解得,利用正弦定理,求得,再利用余弦定理列出方程,即可求解.【详解】(1)由题意,向量,,所以,因为,所以函数的最小正周期为,令,解得,所以函数的单调递减区间为.(2)由(1)函数的解析式为,可得,解得,又由,根据正弦定理,可得,因为,所以,所以为锐角,所以,由余弦定理可得,可得,即,解得或.【点睛】本题主要考查了向量的数量积的运算,三角恒等变换的应用,以及正弦定理和余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.20、(1)(2)【解析】
(1)令,正弦定理,得,代入面积公式计算得到答案.(2)由题意得到,化简得到,,再利用面积公式得到答案.【详解】(1)因为的平分线,令在中,,由正弦定理,得所以.(2)因为,所以,又由,得,,因为,所以所以.【点睛】本题考查了面积的计算,意在考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版智能航运物流船运输合作协议合同2篇
- 二零二五年测绘数据处理与分析合同范本3篇
- 二零二五年特种花卉种子采购合同范本3篇
- 二零二五版商业街区保安临时工劳动合同示范文本3篇
- 二零二五版生态农业基地种植分包合同3篇
- 河北省二零二五年度二手房买卖合同附带专业拆除及清理服务3篇
- 二零二五年度车辆过户手续代理合同3篇
- 二零二五版汽车制造专用管子配件供应合同3篇
- 二零二五年度酒店食堂承包服务合同范本3篇
- 二零二五年度矿业风险评估与风险管理合同2篇
- 割接方案的要点、难点及采取的相应措施
- 2025年副护士长竞聘演讲稿(3篇)
- 2025至2031年中国台式燃气灶行业投资前景及策略咨询研究报告
- 原发性肾病综合征护理
- 第三章第一节《多变的天气》说课稿2023-2024学年人教版地理七年级上册
- 2025年中国电科集团春季招聘高频重点提升(共500题)附带答案详解
- 2025年度建筑施工现场安全管理合同2篇
- 建筑垃圾回收利用标准方案
- 2024年考研英语一阅读理解80篇解析
- 福建省厦门市2023-2024学年高二上学期期末考试语文试题(解析版)
- 防火墙施工组织设计
评论
0/150
提交评论