2022-2023学年福建省厦门市音乐学校数学八年级第二学期期末学业水平测试试题含解析_第1页
2022-2023学年福建省厦门市音乐学校数学八年级第二学期期末学业水平测试试题含解析_第2页
2022-2023学年福建省厦门市音乐学校数学八年级第二学期期末学业水平测试试题含解析_第3页
2022-2023学年福建省厦门市音乐学校数学八年级第二学期期末学业水平测试试题含解析_第4页
2022-2023学年福建省厦门市音乐学校数学八年级第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各式正确的是()A.ba=b2a22.用反证法证明“a>b”时应先假设()A.a≤b B.a<b C.a=b D.a≠b3.如果是二次根式,那么x应满足的条件是()A.x≠8 B.x<8 C.x≤8 D.x>0且x≠84.如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A. B. C. D.5.将下列多项式因式分解,结果中不含因式x-1的是()A.x2-1 B.x2+2x+1 C.x2-2x+1 D.x(x-2)+(2-x)6.下列代数式属于分式的是()A. B. C. D.7.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()A. B.C. D.8.如图,在四边形ABCD中,下列条件不能判定四边形ABCD是平行四边形的是()A.AB//DC,AD//BC B.AB=CD,AD=BCC.AD//DC,AB=DC D.AB//DC,AB=DC9.下列各式中,从左到右的变形,属于分解因式的是()A.10x2-5x=5x(2x-1) B.a2-b2-c2=(a-b)(a+b)-c2C.a(m+n)=am+an D.2x2-4y+2=2(x2-2y)10.一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限二、填空题(每小题3分,共24分)11.赵爽(约公元182~250年),我国历史上著名的数学家与天文学家,他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之为弦实.开方除之,即弦.”又给出了新的证明方法“赵爽弦图”,巧妙地利用平面解析几何面积法证明了勾股定理.如图所示的“赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如果小正方形的面积为1,直角三角形较长直角边长为4,则大正方形的面积为_____________________.12.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.13.某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x,根据题意可列方程为_____.14.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.15.如果一梯子底端离建筑物9m远,那么15m长的梯子可到达建筑物的高度是____m.16.某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:面试笔试成绩评委1评委2评委392889086如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩_____.17.当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是_____.18.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则△BEC的面积=__________________三、解答题(共66分)19.(10分)如图,平行四边形ABCD中,点E、F分别是AD、BC的中点20.(6分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)21.(6分)如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.(1)求证:四边形是平行四边形.(2)若,,则在点的运动过程中:①当______时,四边形是矩形;②当______时,四边形是菱形.22.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.(1)求的值;(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.23.(8分)在平面直角坐标系中,直线经过、两点.(1)求直线所对应的函数解析式:(2)若点在直线上,求的值.24.(8分)某校初中部三个年级共挑选名学生进行跳绳测试,其中七年级人,八年级人,九年级人,体育老师在测试后对测试成绩进行整理,得到下面统计图表.年级平均成绩中位数众数七年级78.5m85八年级807882九年级828584(1)表格中的落在组(填序号);①;②;③;④;⑤;⑥;⑦(2)求这名学生的平均成绩;(3)在本次测试中,八年级与九年级都只有位学生跳下,判断这两位学生成绩在自己所在年级参加测试学生中的排名,谁更考前?请简要说明理由.25.(10分)如图所示,直线分别与轴,轴交于点.点是轴负半轴上一点,(1)求点和点的坐标;(2)求经过点和的一次函数的解析式.26.(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,正方形的点在线段上,点,在轴正半轴上,点在点的右侧,.将正方形沿轴正方向平移,得到正方形,当点与点重合时停止运动.设平移的距离为,正方形与重合部分的面积为.(1)求直线的解析式;(2)求点的坐标;(3)求与的解析式,并直接写出自变量的取值范围.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

对于选项A,给ba的分子、分母同时乘以a可得ab对于选项B、C,只需取一对特殊值代入等式两边,再判断两边的值是否相等即可;对于选项D,先对xy+y2【详解】对于A选项,只有当a=b时ba=b对于B选项,可用特殊值法,令a=2、b=3,则a2+b同样的方法,可判断选项C错误;对于D选项,xy+y2x2-y故选D【点睛】本题可以根据分式的基本性质和因式分解的知识进行求解。2、A【解析】

熟记反证法的步骤,直接得出答案即可,要注意的是a>b的反面有多种情况,需一一否定.【详解】用反证法证明“a>b”时,应先假设a≤b.故选:A.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.3、C【解析】根据二次根式的性质,被开方数大于等于0可得:,解得:,故选C.4、B【解析】

根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=24=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=2(12-x)=12-x(8<x12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.5、B【解析】

将各选项进行因式分解即可得以选择出正确答案.【详解】A.x2﹣1=(x+1)(x-1);B.x2+2x+1=(x+1)2;C.x2﹣2x+1=(x-1)2;D.x(x﹣2)﹣(x﹣2)=(x-2)(x-1);结果中不含因式x-1的是B;故选B.6、A【解析】

形如(A、B均为整式,B中有字母,)的式子是分式,根据分式的定义解答.【详解】根据分式的定义得到:是分式,、、均不是分式,故选:A.【点睛】此题考查分式的定义,熟记定义掌握定义中的A及B的要求是解答问题的关键.7、A【解析】根据题意:徐徐上升的国旗的高度与时间的变化是稳定的,即为直线上升.故选A.8、C【解析】

根据平行四边形的5种判定方法分别进行分析即可.【详解】A.根据两组对边分别平行,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;B.根据两组对边分别相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;C.不能判定判定四边形ABCD是平行四边形,故此选项符合题意;D.根据一组对边平行且相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;故选C.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理9、A【解析】

根据因式分解的定义:将一个多项式化为几个整式乘积的形式叫做因式分解,也叫分解因式,对每个选项逐一判断即可.【详解】解:A.10x2-5x=5x(2x-1),符合定义,属于分解因式,故A正确B.a2-b2-c2=(a-b)(a+b)-c2,不符合定义,故B错误;C.a(m+n)=am+an,属于整式的乘法,故C错误;D.2x2-4y+2=2(x2-2y+1),故D错误,故答案为:A.【点睛】本题考查了因式分解的概念,判断是否为因式分解的问题,解题的关键是掌握因式分解的概念.10、D【解析】∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.解得,或.∴k<1,b<1.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.∴直线y=kx+b经过二、三、四象限.故选D.二、填空题(每小题3分,共24分)11、1【解析】

观察图形可知,小正方形的面积为1,可得出小正方形的边长是1,进而求出直角三角形较短直角边长,再利用勾股定理得出大正方形的边长,进而求出答案.【详解】解:∵小正方形的面积为1,∴小正方形的边长是1,

∵直角三角形较长直角边长为4,∴直角三角形较短直角边长为:4-1=3,∴大正方形的边长为:,∴大正方形的面积为:5²=1,故答案为:1.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.12、1【解析】∵在△ABC中,∠B=90°,AB=3,AC=5,

∴BC=AC∵△ADE是△CDE翻折而成,

∴AE=CE,

∴AE+BE=BC=4,

∴△ABE的周长=AB+BC=3+4=1.

故答案是:1.13、【解析】

可先表示出第一次降价后的价格,那么第一次降价后的价格×(1-降低的百分率)=1,把相应数值代入即可求解.【详解】解:第一次降价后的价格为75×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为:

75×(1-x)×(1-x),

则列出的方程是75(1-x)2=1.

故答案为75(1-x)2=1.【点睛】此题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14、1【解析】

过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴A(1,1),B(2,),∵AC∥BD∥y轴,∴C(1,k),D(2,),∵△OAC与△ABD的面积之和为,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案为1.【点睛】本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.15、12【解析】∵直角三角形的斜边长为15m,一直角边长为9m,

∴另一直角边长=,故梯子可到达建筑物的高度是12m.故答案是:12m.16、89.6分【解析】

将面试所有的成绩加起来再除以3即可得小王面试平均成绩,再根据加权平均数的含义和求法,求出小王的最终成绩即可.【详解】∵面试的平均成绩为=88(分),∴小王的最终成绩为=89.6(分),故答案为89.6分.【点睛】此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.同时考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.17、-7.【解析】

根据负整数指数幂的意义化为分式方程求解即可.【详解】∵与的值相等,∴=,∴,两边乘以(x+1)(x-2),得2(x-2)=3(x+1),解之得x=-7.经检验x=-7是原方程的根.故答案为-7.【点睛】本题考查了负整数指数幂的意义及分式方程的解法,解分式方程的基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.18、.【解析】

过B作BP⊥AD于P,BQ⊥AC于Q,依据∠BAD=∠BAC,即AB平分∠DAC,可得BP=BQ,进而得出BP=,AD=,S△ABD=AD×BP=,再根据△ABD∽△CBE,可得,即可得到S△CBE=.【详解】如图,过B作BP⊥AD于P,BQ⊥AC于Q,由旋转可得,∠CAB=∠D,BD=BA=3,∴∠D=∠BAD,∴∠BAD=∠BAC,即AB平分∠DAC,∴BP=BQ,又∵Rt△ABC中,AB=3,BC=4,∴AC=5,BQ=,∴BP=,∴Rt△ABP中,AP=,∴AD=,∴S△ABD=AD×BP=,由旋转可得,∠ABD=∠CBE,DB=AB,EB=CB,∴△ABD∽△CBE,∴,即,解得S△CBE=,故答案为.【点睛】此题考查了旋转的性质、等腰三角形的性质以及相似三角形的判定与性质.此题注意掌握旋转前后图形的对应关系,注意相似三角形的面积之比等于相似比的平方.三、解答题(共66分)19、见解析【解析】

根据平行四边形的性质和已知可证AE=CF,∠BAE=∠DCF,AB=CD,故根据SAS可证△ABE≌△DCF.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C,AD=BC,∵点E、F分别是∴AE=12∴AE=CF,在△ABE和△CDF中,AB=CD∠A=∠C∴△ABE≌△CDFSAS【点睛】本题考查了平行四边形的判定和全等三角形的判定.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.20、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.【解析】试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.21、(1)、证明过程见解析;(2)、①、2;②、1.【解析】

(1)、首先证明△BEF和△DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE是等边三角形,从而得出答案.【详解】(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,∴△EBF≌△DCF(AAS),∴DC=BE,∴四边形BECD是平行四边形;(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=1.【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.22、(1).(2)①判断:.理由见解析;②或.【解析】

(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【点睛】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.23、(1);(2)【解析】

(1)设直线AB解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出直线AB所对应的函数解析式;(2)把点P(a,-2)代入吧(1)求得的解析式即可求得a的值.【详解】解:(1)设直线所对应的函数表达式为.直线经过、两点,解得直线所对应的函数表达式为.(2)点在直线上,..【点睛】此题考查待定系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论