2022-2023学年广西河池市南丹县数学八年级第二学期期末达标检测试题含解析_第1页
2022-2023学年广西河池市南丹县数学八年级第二学期期末达标检测试题含解析_第2页
2022-2023学年广西河池市南丹县数学八年级第二学期期末达标检测试题含解析_第3页
2022-2023学年广西河池市南丹县数学八年级第二学期期末达标检测试题含解析_第4页
2022-2023学年广西河池市南丹县数学八年级第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形2.不等式组的解集是()A.x>-2 B.x<1C.-1<x<2 D.-2<x<13.已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为()A.3cm2 B.4cm2 C.3cm2 D.23cm24.如图,在平面直角坐标系中,是反比例函数图象上一点,是轴正半轴上一点,以,为邻边作,若点及中点都在反比例函数图象上,则的值为()A. B. C. D.5.如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5 B.4 C.3 D.26.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.13 B.9 C.8.5 D.6.57.为了解某校八年级900名学生每天做家庭作业所用的时间,随机抽取其中120名学生进行抽样调查下列说法正确的是()A.该校八年级全体学生是总体 B.从中抽取的120名学生是个体C.每个八年级学生是总体的一个样本 D.样本容量是1208.某铁工艺品商城某天销售了110件工艺品,其统计如表:货种ABCDE销售量(件)1040301020该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是()A.平均数 B.众数 C.中位数 D.方差9.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022A.甲 B.乙 C.丙 D.丁10.已知x<3,则化简结果是()A.-x-3 B.x+3 C.3-x D.x-3二、填空题(每小题3分,共24分)11.如图,在正方形外取一点,连接、、.过点作的垂线交于点,连接.若,,下列结论:①;②;③点到直线的距离为;④,其中正确的结论有_____________(填序号)12.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6,则线段OP=______.13.如图,平行四边形中,的平分线交于点,的平分线交于点,则的长为________.14.如图,DE∥BC,,则=_______.15.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)1123y(升)111928476由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为1.16.如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=______.17.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为________________18.如图,在平面直角坐标系中,直线l为正比例函数的图象,点的坐标为,过点作x轴的垂线交直线l于点,以为边作正方形;过点作直线l的垂线,垂足为,交x轴于点,以为边作正方形;过点作x轴的垂线,垂足为,交直线l于点,以为边作正方形;……按此规律操作下去,得到的正方形的面积是______________.三、解答题(共66分)19.(10分)如图,矩形ABCD中,对角线AC、BD相交于点O,点P是线段AD上一动点(不与与点D重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若AB=6cm,AD=8cm,P从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.20.(6分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.21.(6分)用适当的方法解下列方程:(1)5x2=4x(2)(x+1)(3x﹣1)=022.(8分)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池深多少尺?”23.(8分)先化简,再求值:(+)÷,其中x=﹣1.24.(8分)观察下面的变形规律:,解答下面的问题:(1)若为正整数,请你猜想;(2)计算:.25.(10分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整),下表是李明、张华在选拔赛中的得分情况:服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:(1)求服装项目在选手考评中的权数;(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.26.(10分)如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒2cm的速度沿线段AB向点B方向运动,点Q从点D出发,以每秒3cm的速度沿线段DC向点C运动,已知动点P、Q同时出发,点P到达B点或点Q到达C点时,P、Q运动停止,设运动时间为t(秒).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求t的值;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得PQ⊥AB?若存在,请求出t的值并说明理由;若不存在,请说明理

参考答案一、选择题(每小题3分,共30分)1、C【解析】

此题可以利用多边形的外角和和内角和定理求解.【详解】解:设所求多边形边数为n,由题意得(n﹣2)•180°=310°×2解得n=1.则这个多边形是六边形.故选C.【点睛】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.2、D【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:,解①得:x>﹣2,解②得:x<1,则不等式组的解集是:﹣2<x<1.故选D.点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3、D【解析】

由四边形ABCD是菱形,可得菱形的四条边都相等AB=BC=CD=AD,菱形的对角线互相平分且相等即AC⊥BD,OA=OC,OB=OD,又因为菱形的边长和一条对角线的长均为2,易求得OB=1,则可得AC的值,根据菱形的面积等于积的一半,即可求得菱形的面积.【详解】解:根据题意画出图形,如图所示:

∵四边形ABCD是菱形,

∴AB=BC=CD=AD=2cm,AC⊥BD,OA=OC,OB=OD,

又∵菱形的边长和一条对角线的长均为2,

∴AB=AD=BD=2,

∴OB=1,

∴OA=AB2-BO2=3,

∴AC=23,

∴菱形的面积为2【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.4、D【解析】

设A(a,),B(0,m),再根据题意列出反比例函数计算解答即可.【详解】设A(a,),B(0,m)OB的中点坐标为(0,),以OA,AB为邻边作四边形ABCD,则AC的中点坐标为(0,),点C的坐标为(-a,m-)点C及BC中点D都在反比例函数图像上点D的坐标为(-a,m-)k=-a(m-)=解得am=18,k=-6故选D【点睛】本题考查反比例函数,熟练掌握计算法则是解题关键.5、D【解析】

由在▱ABCD中,∠ABC的平分线交AD于点E,易证得△ABE是等腰三角形,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD−AE=2.故选D.【点睛】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△ABE是等腰三角形是解此题的关键.6、D【解析】

根据题意首先利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半进行解答即可.【详解】解:由勾股定理得,斜边,所以斜边上的中线长.故选:D.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理,熟记相关性质是解题的关键.7、D【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B.每个学生每天做家庭作业所用的时间是个体,故B不符合题意;C.从中抽取的120名学生每天做家庭作业所用的时间是一个样本,故C不符合题意;D.样本容量是120,故D符合题意;故选:D.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、B【解析】

根据众数的概念:数据中出现次数最多的数,即可得出他应该关注的统计量.【详解】由于众数是数据中出现次数最多的数,所以想要了解哪个货种的销售量最大,应该关注的统计量是这组数据中的众数.故选:B.【点睛】本题主要考查统计的相关知识,掌握平均数,众数,中位数,方差的意义是解题的关键.9、B【解析】

方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选:B.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.10、C【解析】

被开方数可以写成完全平方式,根据二次根式的性质,x<3去绝对值即可.【详解】解:∵x<3,∴3-x>0,

∴原式=.

故选C.【点睛】本题考查了二次根式的化简,注意二次根式的结果为非负数,解题的关键是要掌握二次根式的性质:.二、填空题(每小题3分,共24分)11、①②④【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;

②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;

③过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

④连接BD,求出△ABD的面积,然后减去△BDP的面积即可。【详解】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,∴△APD≌△AEB(SAS);

故此选项成立;

②∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此选项成立;

③过B作BF⊥AE,交AE的延长线于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,又∴点B到直线AE的距离为故此选项不正确;

④如图,连接BD,在Rt△AEP中,

∵AE=AP=1,又∵△APD≌△AEB,=S正方形ABCD故此选项正确.

∴正确的有①②④,故答案为:①②④【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.12、【解析】

根据HL定理证明,求得,根据余弦求解即可;【详解】∵OM=ON,OP=OP,,∴,∵∠AOB=60°,∴,∵OM=6,∴.故答案是.【点睛】本题主要考查了直角三角形的性质应用,结合三角函数的应用是解题的关键.13、1【解析】

由角的等量关系可分别得出△ABG和△DCE是等腰三角形,得出AB=AG,DC=DE,则有AG=DE,从而证得AE=DG,进而求出EG的长.【详解】解:∵四边形ABCD是平行四边形,

∴AD∥BC,AB=CD,

∴∠GBC=∠BGA,∠BCE=∠CED,

又∵BG平分∠ABC,CE平分∠BCD,

∴∠ABG=∠GBC,∠BCE=∠ECD,

∴∠ABG=∠AGB,∠ECD=∠CED.

∴AB=AG,CD=DE,

∴AG=DE,

∴AG-EG=DE-EG,

即AE=DG,

∵AB=5,AD=6,

∴AG=5,DG=AE=1,

∴EG=1,

故答案为1.【点睛】本题考查平行四边形的性质、等腰三角形判定等知识.由等腰三角形的判定和等量代换推出AG=DE是关键.运用平行四边形的性质和等腰三角形的知识解答.14、【解析】

依题意可得△ADE∽△ABC,根据相似三角形的对应边的比相等即可得出比值.【详解】解:∵DE∥BC

∴△ADE∽△ABC

∴∵∴∴,故答案为:.【点睛】本题主要考查了相似三角形的性质和判定,熟练掌握相关的知识是解题的关键.15、12.2【解析】

由表格可知,开始油箱中的油为111L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【详解】解:由题意可得:y=111-8t,

当y=1时,1=111-8t

解得:t=12.2.

故答案为:12.2.【点睛】本题考查函数关系式.注意贮满111L汽油的汽车,最多行驶的时间就是油箱中剩余油量为1时的t的值.16、或1【解析】

连接AC,如图1所示:由矩形的性质得到∠D=90°,AD=BC=4,OA=OC,AB∥DC,求得∠OAF=∠OCE,根据全等三角形的性质得到AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,根据勾股定理即可得到结论;②当AE=EF时,作EG⊥AF于G,如图1所示:设AF=CE=x,则DE=6-x,AG=x,列方程即可得到结论;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,根据勾股定理即可得到结论.【详解】解:连接AC,如图1所示:∵四边形ABCD是矩形,∴∠D=90°,AD=BC=4,OA=OC,AB∥DC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,在Rt△ADE中,由勾股定理得:41+(6-x)1=x1,解得:x=,即DE=;②当AE=EF时,作EG⊥AF于G,如图1所示:则AG=AE=DE,设AF=CE=x,则DE=6-x,AG=x,∴x=6-x,解得:x=4,∴DE=1;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,∴EH=CE-CH=x-(6-x)=1x-6,在Rt△EFH中,由勾股定理得:41+(1x-6)1=x1,整理得:3x1-14x+51=0,∵△=(-14)1-4×3×51<0,∴此方程无解;综上所述:△AEF是等腰三角形,则DE为或1;故答案为:或1.【点睛】此题考查矩形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质,根据勾股定理得出方程是解题的关键,注意分类讨论.17、x<-1;【解析】

由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.【详解】解:两个条直线的交点坐标为(-1,3),且当x<-1时,直线l2在直线l1的上方,故不等式k2x>k1x+b的解集为x<-1.

故本题答案为:x<-1.【点睛】本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.18、【解析】

根据正比例函数的性质得到,,均为等腰直角三角形,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【详解】∵点的坐标为,∴点的坐标为,∴正方形的边长为1,面积为1.∵直线l为正比例函数的图象,∴,,均为等腰直角三角形,∴,,正方形的边长为,面积为.同理,正方形的边长为,面积为……所以正方形的面积是.【点睛】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到,,均为等腰直角三角形,正确找出规律是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)点P运动时间为秒时,四边形PBQD是菱形.【解析】

(1)依据矩形的性质和平行线的性质,通过全等三角形的判定定理判定△POD≌△QOB,所以OP=OQ,则四边形PBQD的对角线互相平分,故四边形PBQD为平行四边形.

(2)点P从点A出发运动t秒时,AP=tcm,PD=(4-t)cm.当四边形PBQD是菱形时,PB=PD=(4-t)cm.在直角△ABP中,根据勾股定理得AP2+AB2=PB2,即t2+32=(4-t)2,由此可以求得t的值.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,在△POD和△QOB中,∴△POD≌△QOB(ASA),∴OP=OQ;又∵OB=OD∴四边形PBQD为平行四边形;(2)答:能成为菱形;证明:t秒后AP=t,PD=8﹣t,若四边形PBQD是菱形,∴PD=BP=8﹣t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8﹣t)2,解得:t=.即点P运动时间为秒时,四边形PBQD是菱形.【点睛】本题考查了平行四边形的判定、矩形的性质以及菱形的性质.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.20、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考点:1.全等三角形的判定与性质;1.勾股定理.21、(1)x1=0,x2=;(2)x1=﹣1,x2=.【解析】

(1)先移项,然后利用因式分解法解方程;

(2)利用因式分解法解方程.【详解】解:(1)由原方程,得x(5x﹣4)=0,则x=0或5x﹣4=0,解得x1=0,x2=;(2)(x+1)(3x﹣1)=0,x+1=0或3x﹣1=0,x1=﹣1,x2=.【点睛】本题考查了因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学转化思想).22、1尺【解析】

根据勾股定理列出方程,解方程即可.【详解】设这个水池深x尺,由题意得:x2+52=(x+1)2,解得:x=1.答:这个水池深1尺.【点睛】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.23、-5.【解析】

括号内先通分进行分式加减法运算,然后再进行分式除法运算,化简后把x的值代入计算即可得.【详解】(+)÷===,当x=-1时,原式=-2-3=-5.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.24、(1);(2).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论