版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年广东省清远市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.已知角α的终边经过点(-4,3),则cosα()A.4/5B.3/5C.-3/5D.-4/5
2.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角
3.下列函数是奇函数的是A.y=x+3
B.C.D.
4.已知点A(1,-1),B(-1,1),则向量为()A.(1,-1)B.(-1,1)C.(0,0)D.(-2,2)
5.设f(x)=,则f(x)是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
6.现无放回地从1,2,3,4,5,6这6个数字中任意取两个,两个数均为偶数的概率是()A.1/5B.1/4C.1/3D.1/2
7.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250
8.在等差数列{an}中,若a3+a17=10,则S19等于()A.65B.75C.85D.95
9.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]
10.执行如图所示的程序,若输人的实数x=4,则输出结果为()A.4B.3C.2D.1/4
11.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n
12.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3
B.l1丄l2,l2//l3,l1丄l3
C.l1//l2//l3,l1,l2,l3共面
D.l1,l2,l3共点l1,l2,l3共面
13.下列命题是真命题的是A.B.C.D.
14.A.B.C.
15.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
16.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.
B.
C.
D.
17.已知集合M={1,2,3,4},以={-2,2},下列结论成立的是()A.N包含于MB.M∪N=MC.M∩N=ND.M∩N={2}
18.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}
19.设集合A={x|x≤2或x≥6},B={x||x-1|≤3},则为A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]
20.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
二、填空题(10题)21.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā)=
。
22.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.
23.若函数_____.
24.
25.设x>0,则:y=3-2x-1/x的最大值等于______.
26.
27.
28.椭圆9x2+16y2=144的短轴长等于
。
29.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.
30.
三、计算题(10题)31.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
32.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
33.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
34.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
35.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
36.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
37.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
38.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
39.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
40.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
四、简答题(10题)41.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
42.解关于x的不等式
43.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
44.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
45.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
46.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数
47.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
48.已知的值
49.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率
50.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
五、解答题(10题)51.
52.
53.
54.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
55.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.
56.解不等式4<|1-3x|<7
57.己知sin(θ+α)=sin(θ+β),求证:
58.
59.
60.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数
六、单选题(0题)61.A.0
B.C.1
D.-1
参考答案
1.D三角函数的定义.记P(-4,3),则x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5
2.D
3.C
4.D平面向量的线性运算.AB=(-1-1,1-(-1)=(-2,2).
5.C由于f(-x)不等于f(x)也不等于f(-x)。
6.A
7.A分层抽样方法.样本抽取比70/3500=1/50例为该校总人数为1500+3500=5000,则=n/5000=1/50,∴n=100.
8.D
9.B
10.C三角函数的运算∵x=4>1,∴y=㏒24=2
11.C直线与平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因为n⊥β,所以n⊥L.
12.B判断直线与直线,直线与平面的位置关系.A项还有异面或者相交,C、D不一定.
13.A
14.A
15.B
16.D
17.D集合的包含关系的判断.两个集合只有一个公共元素2,所以M∩N={2}
18.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C
19.A由题可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。
20.AA是空集可以得到A交B为空集,但是反之不成立,因此时充分条件。
21.0.5由于两个事件是对立事件,因此两者的概率之和为1,又两个事件的概率相等,因此概率均为0.5.
22.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3
23.1,
24.0.4
25.
基本不等式的应用.
26.-7/25
27.
28.
29.2n-1
30.π/4
31.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
32.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
33.
34.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
35.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
36.
37.
38.
39.
40.
41.
42.
43.
44.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
45.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
46.
47.
48.
∴∴则
49.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
50.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
51.
52.
53.
54.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标采购合同范本示例3篇
- 常用施工班组合同范本3篇
- 收购烂尾酒店合同模板3篇
- 工程地质调查设计与施工合同3篇
- 工程安全责任书3篇
- 携手制止家庭的不和谐音3篇
- 工伤代表办理委托3篇
- 旅游电子合同平台3篇
- 搬厂安全协议书3篇
- 工业矿产买卖合同模板3篇
- 贵州大学新型智库建设实施方案
- 热工设备安全操作和维护
- 当代世界经济与政治学习通超星期末考试答案章节答案2024年
- 2024年中国人保行测笔试题库
- 初++中数学设计学校田径运动会比赛场地+课件++人教版七年级数学上册
- 2024年秋八年级英语上册 Unit 7 Will people have robots教案 (新版)人教新目标版
- 2《永遇乐京口北固亭怀古》同步练习(含答案)统编版高中语文必修上册-3
- 自来水的供水环保与生态协调
- 羽毛球馆运营管理指南
- 销售储备培养方案
- 【电动汽车两挡变速器结构设计10000字(论文)】
评论
0/150
提交评论