学高中数学推理与证明反证法学案新人教A版选修_第1页
学高中数学推理与证明反证法学案新人教A版选修_第2页
学高中数学推理与证明反证法学案新人教A版选修_第3页
学高中数学推理与证明反证法学案新人教A版选修_第4页
学高中数学推理与证明反证法学案新人教A版选修_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

06/605/6/反证法学习目标核心素养1.了解反证法是间接证明的一种基本方法.(重点、易混点)2.理解反证法的思考过程,会用反证法证明数学问题.(重点、难点)通过反证法的学习,培养学生的逻辑推理的核心素养.反证法的定义及证题的关键思考1:反证法的实质是什么?[提示]反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.思考2:有人说反证法的证明过程既可以是合情推理也可以是一种演绎推理,这种说法对吗?为什么?[提示]反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.1.“a<b”的反面应是()A.a≠b B.a>bC.a=b D.a=b或a>b[答案]D2.用反证法证明“如果a>b,那么eq\r(3,a)>eq\r(3,b)”,假设的内容应是________.[答案]eq\r(3,a)≤eq\r(3,b)3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.③①②[由反证法的一般步骤可知,正确的顺序应为③①②.]4.应用反证法推出矛盾的推导过程中,下列选项中可以作为条件使用的有________.(填序号)①结论的反设;②已知条件;③定义、公理、定理等;④原结论.①②③[反证法的“归谬”是反证法的核心,其含义是:从命题结论的假设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.]用反证法证明否定性命题【例1】已知三个正数a,b,c成等比数列,但不成等差数列.求证:eq\r(a),eq\r(b),eq\r(c)不成等差数列.[证明]假设eq\r(a),eq\r(b),eq\r(c)成等差数列,则eq\r(a)+eq\r(c)=2eq\r(b),即a+c+2eq\r(ac)=4b.∵a,b,c成等比数列,∴b2=ac,即b=eq\r(ac),∴a+c+2eq\r(ac)=4eq\r(ac),∴(eq\r(a)-eq\r(c))2=0,即eq\r(a)=eq\r(c).从而a=b=c,与a,b,c不成等差数列矛盾,故eq\r(a),eq\r(b),eq\r(c)不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.用反证法证明数学命题的步骤[跟进训练]1.设SA,SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直.[证明]假设AC⊥平面SOB,如图,∵直线SO在平面SOB内,∴SO⊥AC.∵SO⊥底面圆O,∴SO⊥AB.∴SO⊥平面SAB.∴平面SAB∥底面圆O.这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直.用反证法证明唯一性命题【例2】求证方程2x=3有且只有一个根.[证明]∵2x=3,∴x=log23,这说明方程2x=3有根.下面用反证法证明方程2x=3的根是唯一的:假设方程2x=3至少有两个根b1,b2(b1≠b2),则2eq\s\up12(b1)=3,2eq\s\up12(b2)=3,两式相除得2eq\s\up12(b1-b2)=1.若b1-b2>0,则2eq\s\up12(b1-b2)>1,这与2eq\s\up12(b1-b2)=1相矛盾.若b1-b2<0,则2eq\s\up12(b1-b2)<1,这也与2eq\s\up12(b1-b2)=1相矛盾.∴b1-b2=0,则b1=b2.∴假设不成立,从而原命题得证.巧用反证法证明唯一性命题(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.[跟进训练]2.已知:平面α和一点P.求证:过点P与α垂直的直线只有一条.[证明]如图所示,不论点P在α内还是在α外,设PA⊥α,垂足为A(或P).假设过点P不止有一条直线与α垂直,如还有另一条直线PB⊥α,设PA,PB确定的平面为β,且α∩β=a,于是在平面β内过点P有两条直线PA,PB垂直于a,这与过一点有且只有一条直线与已知直线垂直相矛盾,∴假设不成立,原命题成立.用反证法证明“至多”“至少”问题[探究问题]1.你能阐述一下“至少有一个、至多有一个、至少有n个”等量词的含义吗?[提示]量词含义至少有一个有n个,其中n≥1至多有一个有0或1个至少有n个大于等于n个2.在反证法证明中,你能说出“至少有一个、至多有一个、至少有n个”等量词的反设词吗?[提示]量词反设词至少有一个一个也没有至多有一个至少有两个至少有n个至多有n-1个【例3】已知a≥-1,求证三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数解.[证明]假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:即eq\b\lc\{\rc\(\a\vs4\al\co1(-\f(3,2)<a<\f(1,2),,a>\f(1,3)或a<-1,,-2<a<0.))∴-eq\f(3,2)<a<-1,这与已知a≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.1.(变条件)将本题改为:已知下列三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,如何求实数a的取值范围?[解]若三个方程都没有实根,则eq\b\lc\{\rc\(\a\vs4\al\co1(16a2-4?3-4a?<0,,?a-1?2-4a2<0,,4a2+8a<0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(-\f(3,2)<a<\f(1,2),,a>\f(1,3)或a<-1,,-2<a<0,))即-eq\f(3,2)<a<-1,故三个方程至少有一个方程有实根,实数a的取值范围是eq\b\lc\{\rc\}(\a\vs4\al\co1(a\b\lc\|\rc\(\a\vs4\al\co1(a≥-1或a≤-\f(3,2))))).2.(变条件)将例题条件改为三个方程中至多有2个方程有实数根,求实数a的取值范围.[解]假设三个方程都有实数根,则eq\b\lc\{\rc\(\a\vs4\al\co1(?4a?2-4?-4a+3?≥0,,?a-1?2-4a2≥0,,?2a?2+4×2a≥0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(4a2+4a-3≥0,,3a2+2a-1≤0,,a2+2a≥0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a≤-\f(3,2)或a≥\f(1,2),,-1≤a≤\f(1,3),,a≤-2或a≥0.))即a∈?.所以三个方程中至多有2个方程有实数根时,实数a的取值范围为R.当命题中出现“至少……”“至多……”“不都……”“都不……”“没有……”“唯一”等指示性词语时,宜用反证法.提醒:对于此类问题,需仔细体会“至少有一个”“至多有一个”等字眼的含义,弄清结论的否定是什么,避免出现证明遗漏的错误.用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是()A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角C[“最多只有一个”的否定是“至少有两个”,故选C.]2.如果两个实数之和为正数,则这两个数()A.一个是正数,一个是负数B.两个都是正数C.至少有一个正数D.两个都是负数C[假设两个数分别为x1,x2,且x1≤0,x2≤0,则x1+x2≤0,这与两个数之和为正数矛盾,所以两个实数至少有一个正数,故应选C.]3.已知平面α∩平面β=直线a,直线b?α,直线c?β,b∩a=A,c∥a,求证:b与c是异面直线,若利用反证法证明,则应假设________.b与c平行或相交[∵空间中两直线的位置关系有3种:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论