江西省上饶市扬帆中学2023年高二数学文期末试题含解析_第1页
江西省上饶市扬帆中学2023年高二数学文期末试题含解析_第2页
江西省上饶市扬帆中学2023年高二数学文期末试题含解析_第3页
江西省上饶市扬帆中学2023年高二数学文期末试题含解析_第4页
江西省上饶市扬帆中学2023年高二数学文期末试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上饶市扬帆中学2023年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的图过定点A,则A点坐标是

)A、()

B、()

C、(1,0)

D、(0,1)参考答案:C2.果a<b<0,那么

(

).A.a-b>0 B.ac<bc C.> D.a2<b2参考答案:C3.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=()A.60 B.70 C.80 D.90参考答案:C【考点】B3:分层抽样方法.【分析】先求出总体中中A种型号产品所占的比例,是样本中A种型号产品所占的比例,再由条件求出样本容量.【解答】解:由题意知,总体中中A种型号产品所占的比例是=,因样本中A种型号产品有16件,则×n=16,解得n=80.故选C.4.若全集,则(

)A.

B.

C.

D.参考答案:A略5.一个物体的位移s(米)与时间t(秒)的关系为,则该物体在3秒末的瞬时速度是()A.3米/秒 B.4米/秒 C.5米/秒 D.6米/秒参考答案:B【分析】对函数求导,将代入导函数,即可得出结果.【详解】因为关于的函数为:,所以,因此,物体在3秒末的瞬时速度是.故选B【点睛】本题主要考查物体的瞬时速度,根据导函数的几何意义即可求解,属于基础题型.6.函数是上的偶函数,则的值是(

)A.

B.

C.

D.参考答案:C7.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为f(x)=x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()A.8 B. C.-1 D.-8参考答案:C略8.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是()A.

B.

C.

D.2参考答案:C9.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<﹣xf′(x),则不等式f(x+1)>(x﹣1)f(x2﹣1)的解集是()A.(0,1) B.(1,+∞) C.(1,2) D.(2,+∞)参考答案:D【考点】6B:利用导数研究函数的单调性.【分析】由题意构造函数g(x)=xf(x),再由导函数的符号判断出函数g(x)的单调性,不等式f(x+1)>(x﹣1)f(x2﹣1),构造为g(x+1)>g(x2﹣1),问题得以解决.【解答】解:设g(x)=xf(x),则g'(x)='=x'f(x)+xf'(x)=xf′(x)+f(x)<0,∴函数g(x)在(0,+∞)上是减函数,∵f(x+1)>(x﹣1)f(x2﹣1),x∈(0,+∞),∴(x+1)f(x+1)>(x+1)(x﹣1)f(x2﹣1),∴(x+1)f(x+1)>(x2﹣1)f(x2﹣1),∴g(x+1)>g(x2﹣1),∴x+1<x2﹣1,解得x>2.故选:D.【点评】本题考查了由条件构造函数和用导函数的符号判断函数的单调性,利用函数的单调性的关系对不等式进行判断.10.已知正四棱柱中,=,为中点,则异面直线与所形成角的余弦值为A.

B.

C.

D.

参考答案:二、填空题:本大题共7小题,每小题4分,共28分11.若角α的终边与240°角的终边相同,则的终边在第

象限.参考答案:二或四【分析】首先表示出α,然后可知=120°+k?180°,从而确定所在的象限.【解答】解:由题意知,α=240°+k?360°,k∈z,=120°+k?180°,k∈z故的终边在第二或四象限.故答案为:二或四.【点评】本题主要考查了象限角,确定出=120°+k?180°是解题的关键.12.设数列{an}的前n项和为Sn,令Tn=,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a100的“理想数”为101,那么数列2,a1,a2,…,a100的“理想数”为.参考答案:102【考点】数列的求和.【专题】计算题;新定义.【分析】据“理想数”的定义,列出a1,a2,…,a100的“理想数”满足的等式及2,a1,a2,…,a100的“理想数”的式子,两个式子结合求出数列2,a1,a2,…,a100的“理想数”.【解答】解:∵为数列a1,a2,…,an的“理想数”,∵a1,a2,…,a100的“理想数”为101∴又数列2,a1,a2,…,a100的“理想数”为:=故答案为102【点评】本题考查的是新定义的题型,关键是理解透新定义的内容,是近几年常考的题型.13.

不等式的解集为

.参考答案:[-3,1]14.已知圆和过原点的直线的交点为则的值为________________。参考答案:

解析:设切线为,则15.在△ABC中,AC=4,M为AC的中点,BM=3,则?=

.参考答案:5【考点】平面向量数量积的运算.【分析】由题意可得=2,=,对两式平方相减即可得出答案.【解答】解:∵M为AC的中点,∴=2,∴=4=36,①∵=,∴+﹣2==16,②①﹣②得:4=20,∴=5.故答案为:5.16.命题?x∈R,x2﹣x+3>0的否定是

.参考答案:?x∈R,x2﹣x+3≤0【考点】2J:命题的否定;2I:特称命题.【分析】根据全称命题的否定要改成存在性命题的原则,可写出原命题的否定【解答】解:原命题为:?x∈R,x2﹣x+3>0∵原命题为全称命题∴其否定为存在性命题,且不等号须改变∴原命题的否定为:?x∈R,x2﹣x+3≤0故答案为:?x∈R,x2﹣x+3≤017.曲线在点处的切线方程为___________参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A.B,将直线AB向左平移p个单位得到直线l,N为l上的动点.(1)若|AB|=8,求抛物线的方程;(2)在(1)的条件下,求?的最小值.参考答案:【考点】直线与抛物线的位置关系.【分析】(1)根据抛物线的定义得到|AB|=x1+x2+p=4p,再由已知条件,得到抛物线的方程;(2)设直线l的方程及N点坐标和A(x1,y1),B(x2,y2),利用向量坐标运算,求得?的以N点坐标表示的函数式,利用二次函数求最值的方法,可求得所求的最小值.【解答】解:(1)由条件知lAB:y=x﹣,则,消去y得:x2﹣3px+p2=0,则x1+x2=3p,由抛物线定义得|AB|=x1+x2+p=4p又因为|AB|=8,即p=2,则抛物线的方程为y2=4x.(2)直线l的方程为:y=x+,于是设N(x0,x0+),A(x1,y1),B(x2,y2)则=(x1﹣x0,y1﹣x0﹣),=(x2﹣x0,y2﹣x0﹣)即?=x1x2﹣x0(x1+x2)++y1y2﹣(x0+)(y1+y2)+(x0+)2,由第(1)问的解答结合直线方程,不难得出x1+x2=3p,x1x2=p2,且y1+y2=x1+x2﹣p=2p,y1y2=(x1﹣)(x2﹣)=﹣p2,则?=2﹣4px0﹣p2=2(x0﹣p)2﹣p2,当x0=时,?的最小值为﹣p2.【点评】此题考查抛物线的定义,及向量坐标运算.19.(本小题12分)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:福娃名称贝贝晶晶欢欢迎迎妮妮数量12311从中随机地选取5只.(1)求选取的5只恰好组成完整“奥运吉祥物”的概率;(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X表示所得的分数,求X的分布列及数学期望.参考答案:略20.已知函数.(1)求函数的最小正周期和单调递减区间;(2)若,且,求的值.参考答案:(1)最小正周期,单调减区间为(2)分析:(1)根据原式结合二倍角公式,降幂公式,辅助角公式进行化简,然后计算周期,根据正弦函数的基本性质求得单调区间;(2)∵f()=,即sin=1.

可得α的值,然后按正切的和差公式打开即可求解.

解:(1)f(x)=(2cos2x-1)sin2x+cos4x

=cos2xsin2x+cos4x

=(sin4x+cos4x)

=sin,

∴f(x)的最小正周期T=.

令2kπ+≤4x+≤2kπ+π,k∈Z,得+≤x≤+,k∈Z.∴f(x)的单调减区间为,k∈Z.

(2)∵f=,即sin=1

因为α∈(0,π),-<α-<,

所以α-=,故α=.

因此tan===2-.点睛:考查三角函数的化简和基本性质,对于求值计算题要特别注意角度的范围变化,这关系到角度的大小取值和三角函数值符号的判定,同时对三角函数的和差公式要做到熟练是解题关键,属于基础题.21.已知=(2,﹣1,2),=(2,2,1),求以,为邻边的平行四边形的面积.参考答案:【考点】空间向量的数量积运算.【专题】计算题;方程思想;定义法;空间向量及应用.【分析】由S平行四边形=||||?sin<,>,能求出以,为邻边的平行四边形的面积.【解答】(本题满分10分)(理)解:∵=(2,﹣1,2),=(2,2,1),∴||==3,||==3,?=2×2+(﹣1)×2+2×1=4,∴cos<,>==,sin<,>=,S平行四边形=||||?sin<,>=.∴以,为邻边的平行四边形的面积为.【点评】本题考查平行四边形的面积公式的求法,是基础题,解题时要认真审题,注意空间向量运算法则的合理运用.22.已知椭圆C:+=1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)根据椭圆一个顶点为A(2,0),离心率为,可建立方程组,从而可求椭圆C的方程;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0,从而可求|MN|,A(2,0)到直线y=k(x﹣1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论