




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
语言与核密度估计非参数统计详解演示文稿第一页,共二十四页。优选语言与核密度估计非参数统计第二页,共二十四页。
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大,和这个数比较近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。基于这种想法,针对观察中的第一个数,我们都可以f(x-xi)去拟合我们想象中的那个远小近大概率密度。当然其实也可以用其他对称的函数。针对每一个观察中出现的数拟合出多个概率密度分布函数之后,取平均。如果某些数是比较重要,某些数反之,则可以取加权平均。第三页,共二十四页。
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可以举一个极端的例子:在R中输入:plot(density(rep(0,
1000)))
可以看到它得到了正态分布的曲线,但实际上呢?从数据上判断,它更有可能是一个退化的单点分布。第四页,共二十四页。但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟中存在的异方差问题。比如说我们要估计一下下面的一组数据:set.seed(10)
dat<c(rgamma(300,shape=2,scale=2),rgamma(100,shape=10,scale=2))
第五页,共二十四页。第六页,共二十四页。可以看出它是由300个服从gamma(2,2)与100个gamma(10,2)的随机数构成的,他用参数统计的办法是没有办法得到一个好的估计的。那么我们尝试使用核密度估计:plot(density(dat),ylim=c(0,0.2))
第七页,共二十四页。将利用正态核密度与标准密度函数作对比dfn<-function(x,a,alpha1,alpha2,theta){
a*dgamma(x,shape=alpha1,scale=theta)+(1-a)*dgamma(x,shape=alpha2,scale=theta)}
pfn<-function(x,a,alpha1,alpha2,theta){
a*pgamma(x,shape=alpha1,scale=theta)+(1-a)*pgamma(x,shape=alpha2,scale=theta)}
curve(dfn(x,0.75,2,10,2),add=T,col="red")
第八页,共二十四页。得到下图:(红色的曲线为真实密度曲线)第九页,共二十四页。可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至少趋势是得到了的。如果换用gamma分布的核效果无疑会更好,但是遗憾的是r中并没有提供那么多的核供我们挑选(其实我们知道核的选择远没有窗宽的选择来得重要),所以也无需介怀。R中提供的核:kernel=c("gaussian","epanechnikov","rectangular",
"triangular","biweight","cosine","optcosine")。第十页,共二十四页。我们先来看看窗宽的选择对核密度估计的影响:dfn1<-function(x){
0.5*dnorm(x,3,1)+0.5*dnorm(x,-3,1)}
par(mfrow=c(2,2))
curve(dfn1(x),from=-6,to=6)
data<-c(rnorm(200,3,1),rnorm(200,-3,1))
plot(density(data,bw=8))
plot(density(data,bw=0.8))
plot(density(data,bw=0.08))
第十一页,共二十四页。得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是拟合不足便是过拟合。第十二页,共二十四页。第十三页,共二十四页。窗宽究竟该如何选择呢?我们这里不加证明的给出最佳窗宽选择公式:
第十四页,共二十四页。(这个基于积分均方误差最小的角度得到的)这里介绍两个可操作的窗宽估计办法:(这两种方法都比较容易导致过分光滑)1、
Silverman大拇指法则这里使用R(phi’’)/sigma^5估计R(f’’),phi代表标准正态密度函数,得到h的表达式:h=(4/(3n))^(*1/5)*sigma2、
极大光滑原则h=3*(R(K)/(35n))^(1/5)*sigma当然也有比较麻烦的窗宽估计办法,比如缺一交叉验证,插入法等,可以参阅《computationalstatistics》一书第十五页,共二十四页。我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗?我们还是以上面的混合正态数据为例来看看效果。使用大拇指法则,将数据n=400,sigma=3.030658,带入公式,h=0.9685291使用极大光滑原则,假设K为正态核,R(K)=1/(sqrt(2*pi)),h=1.121023可以看出他们都比我们认为的h=0.8要大一些,作图如下:第十六页,共二十四页。plot(density(data,bw=0.9685))
plot(density(data,bw=1.1210))
第十七页,共二十四页。由我们给出的以Gauss核为例做核密度估计用Gauss核做核密度估计的R程序如下(还是使用我们的混合正态密度的例子):第十八页,共二十四页。ker.density=function(x,h){
x=sort(x)
n=length(x);s=0;t=0;y=0
for(i
in
2:n)
s[i]=0
for(i
in
1:n){
for(j
in
1:n)
s[i]=s[i]+exp(-((x[i]-x[j])^2)/(2*h*h))
t[i]=s[i]
}
for(i
in
1:n)
y[i]=t[i]/(n*h*sqrt(2*pi))
z=complex(re=x,im=y)
hist(x,freq=FALSE)
lines(z)
}
ker.density(data,0.8)
第十九页,共二十四页。作图如下:第二十页,共二十四页。最后说一个R的内置函数density()。其实我觉得如果不是为了简要介绍核密度估计的一些常识我们完全可以只学会这个函数先看看函数的基本用法:density(x,...)##DefaultS3method:第二十一页,共二十四页。density(x,bw="nrd0",adjust=1,
kernel=c("gaussian","epanechnikov","rectangular",
"triangular","biweight",
"cosine","optcosine"),
weights=NULL,window=kernel,width,
give.Rkern=FALSE,
n=512,from,to,cut=3,na.rm=FALSE,...)
第二十二页,共二十四页。对重要参数做出较为详细的说明:X:我们要进行核密度估计的数据Bw:窗宽,这里可以由我们自己制定,也可以使用默认的办法nrd0:BandwidthselectorsforGaussiankernels。我们还可以使用bw.SJ(x,nb=1000,lower=0.1*hmax,upper=hmax,
method=c("ste","dpi"),tol=0.1*lower),这里的method=”dpi”就是前面提到过的插入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行网点业务运营流程规范
- 劳动教育引导大学生就业观念的塑造与提升
- 在线教育培训服务合同协议书版
- 供水管线完善工程实施方案(范文模板)
- 我的梦想与努力抒情文(5篇)
- 石油工程专业知识重点
- 音乐制作与录音工程教程
- 企业宣传印刷品制作合同协议
- 国际商务管理与跨文化交流试题集
- 建筑工程材料知识考核
- 酱料生产知识培训课件模板
- 药品网络销售监督管理办法培训
- 天车轨道梁加固安全施工方案
- 脱发介绍演示培训课件
- 初中物理教材插图原理集锦(回归教材)
- 肠梗阻护理查房(小肠减压管的应用)
- 2024届辽宁省沈阳市东北育才校中考冲刺卷物理试题含解析
- 抗菌药物合理应用
- 初中体育篮球双手胸前传接球教案
- 中建盘扣式落地卸料平台施工方案
- 配电网技术标准(施工验收分册)
评论
0/150
提交评论