版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGE22学必求其心得,业必贵于专精PAGE2.1实际问题中导数的意义学习目标1。利用实际问题加强对导数概念的理解。2.能利用导数求解有关实际问题.知识点实际问题中导数的意义思考某人拉动一个物体前进,他所做的功W(单位:J)是时间t(单位:s)的函数,设这个函数可以表示为W=W(t)=t3-4t2+10t。(1)t从1s到4s时W关于t的平均变化率是多少?(2)上述问题的实际意义是什么?(3)W′(1)的实际意义是什么?梳理(1)在物理学中,通常称力在单位时间内________为功率,它的单位是________.功率是功关于________的导数.(2)在气象学中,通常把单位时间(如1时,1天等)内的________称作降雨强度,它是反映一次降雨大小的一个重要指标.降雨强度是降雨量关于时间的________.(3)在经济学中,通常把生产成本y关于________x的函数y=f(x)的导函数称为____________.边际成本f′(x0)指的是当产量为x0时,生产成本的增加速度,也就是当产量为x0时,每增加一个单位的产量,需要增加f′(x0)个单位的成本.类型一导数在物理学中的意义例1某质点的运动方程为s=s(t)=2t2+3t,其中s是位移(单位:m),t是时间(单位:s).(1)求当t从1s变到3s时,位移s关于时间t的平均变化率,并解释它的实际意义;(2)求s′(1),s′(2),并解释它们的实际意义.反思与感悟根据导数的实际意义,在物理学中,除了我们所熟悉的位移、速度与时间的关系,功与时间的关系,还应了解质量关于体积的导数为密度,电量关于时间的导数为电流强度等.因此,在解释某点处的导数的物理意义时,应结合这些导数的实际意义进行理解.跟踪训练1某河流在一段时间xmin内流过的水量为ym3,y是x的函数,且y=f(x)=eq\r(3,x).(1)当x从1变到8时,y关于x的平均变化率是多少?(2)求f′(27),并解释它的实际意义.类型二导数在经济生活中的应用例2某机械厂生产某种机器配件的最大生产能力为每日100件,假设日产品的总成本C(元)与日产量x(件)的函数关系为C(x)=eq\f(1,4)x2+60x+2050.求当日产量由10件提高到20件时,总成本的平均改变量,并说明其实际意义.引申探究1.若本例条件不变,求当日产量为75件时的边际成本,并说明其实际意义.2.若本例的条件“C(x)=eq\f(1,4)x2+60x+2050"变为“C(x)=eq\f(1,4)x2+ax+2050,当日产量为75件时的边际成本大于97。5",求a的取值范围.反思与感悟生产成本y关于产量x的函数y=f(x)中,f′(x0)指的是当产量为x0时,生产成本的增加速度,也就是当产量为x0时,每增加一个单位的产量,需增加f′(x0)个单位的成本.跟踪训练2已知某商品的成本函数为C(Q)=100+eq\f(Q2,4)(Q为产品的数量).(1)求Q=10时的总成本、平均成本及边际成本;(2)当产量Q为多少时,平均成本最小?最小为多少?类型三在日常生活中的应用例3一名工人上班后开始连续工作,生产的产品质量y(单位:g)是工作时间x(单位:h)的函数,设这个函数为y=f(x)=eq\f(x2,20)+4eq\r(x).(1)求x从1h变到4h时,y关于时间x的平均变化率,并解释它的实际意义;(2)求f′(1),f′(4),并解释它的意义.反思与感悟在不同的实际问题中导数的意义是不相同的,要结合具体问题进行分析,在某一点处的导数的实际意义是当自变量在该点处的改变量趋近于零时,平均变化率所趋近的值,问题不同有不同的意义.跟踪训练3某年高考,某考生在参加数学科考试时,其解答完的题目数量y(单位:道)与所用时间x(单位:分钟)近似地满足函数关系y=2eq\r(x)。(1)求x从0分钟变化到36分钟时,y关于x的平均变化率,并解释它的实际意义;(2)求f′(64),f′(100),并解释它的实际意义.1.某公司的盈利y(元)和时间x(天)的函数关系是y=f(x),假设f(x)>0恒成立,且f′(10)=10,f′(20)=1,则这些数据说明第20天与第10天比较()A.公司已经亏损B.公司的盈利在增加,且增加的幅度变大C.公司在亏损且亏损幅度变小D.公司的盈利在增加,但增加的幅度变小2.某人拉动一个物体前进,他所做的功W是时间t的函数,即W=W(t),则W′(t0)表示()A.t=t0时做的功 B.t=t0时的速度C.t=t3时的位移 D.t=t0时的功率3.某收音机制造厂的管理者通过对上午上班工人工作效率的研究表明:一个中等技术水平的工人,从8:00开始工作,t小时后可装配晶体管收音机的台数为Q(t)=-t3+9t2+12t,则Q′(2)=________,它的实际意义是__________________________________.4.某物体的运动速度与时间的关系为v(t)=2t2-1,则t=2时的加速度为________.5.某厂生产x吨产品获利y万元,y是x的函数,且函数为y=f(x)=-eq\f(1,8)x2+21x-100.(1)当x从4变到8时,y关于x的平均变化率是多少?它代表什么实际意义?(2)求f′(84),并解释它的实际意义.1.解决实际问题的一般思路:实际问题转化为数学问题,数学问题的结论回到实际问题的结论.2.解决实际问题的一般步骤(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问题的主要关系;(2)建模:将文字语言转化成数学语言,利用数学知识,建立相应的数学模型;(3)解模:把数学问题化归为常规问题,选择合适的数学方法求解;(4)对结果进行验证评估,定性、定量分析,作出正确的判断,确定其答案.
答案精析问题导学思考(1)eq\f(W4-W1,4-1)=eq\f(40-7,3)=11J/s。(2)它表示从t=1s到t=4s这段时间内,这个人平均每秒做功11J.(3)W′(t)=3t2-8t+10,W′(1)=5表示在t=1s时每秒做功5J.梳理(1)做的功瓦特时间(2)降雨量导数(3)产量边际成本题型探究例1解(1)当t从1s变到3s时,s关于t的平均变化率为eq\f(Δs,Δt)=eq\f(s3-s1,3-1)=eq\f(27-5,3-1)=11m/s。它表示从t=1s到t=3s这段时间内,该质点平均每秒的位移是11m.(2)由导数公式表和导数的运算法则可得s′(t)=4t+3,则s′(1)=4+3=7m/s,s′(2)=4×2+3=11m/s。s′(1)表示的是该质点在t=1s时的瞬时速度,也就是该质点在t=1s这个时刻的瞬时速度为7m/s。s′(2)表示的是该质点在t=2s时的瞬时速度,也就是该质点在t=2s这个时刻的瞬时速度为11m/s。跟踪训练1解(1)当x从1变到8时,y关于x的平均变化率为eq\f(f8-f1,8-1)=eq\f(2-1,7)=eq\f(1,7)(m3/min).(2)f′(x)=eq\f(1,3)x-eq\f(2,3),于是f′(27)=eq\f(1,3)×27-eq\f(2,3)=eq\f(1,27)(m3/min),实际意义为当时间为27min时,水流量增加的速度为eq\f(1,27)m3/min,也就是当时间为27min时,每增加1min,水流量增加eq\f(1,27)m3.例2解当x从10件提高到20件时,总成本C从C(10)=2675元变到C(20)=3350元.此时总成本的平均改变量为eq\f(C20-C10,20-10)=67。5(元/件),其表示日产量从10件提高到20件时平均每件产品的总成本的改变量.引申探究1.解因为C′(x)=eq\f(1,2)x+60,所以C′(75)=eq\f(1,2)×75+60=97.5(元/件),它指的是当日产量为75件时,每多生产一件产品,需增加成本97。5元.2.解因为C′(x)=eq\f(1,2)x+a,所以日产量为75件时的边际成本大于97.5,即C′(75)=eq\f(1,2)×75+a〉97.5,解得a>60。跟踪训练2解(1)Q=10时的总成本C(10)=100+eq\f(102,4)=125;Q=10时的平均成本eq\x\to(C10)=eq\f(C10,10)=12。5.边际成本即成本函数C(Q)对产量Q的导数,故边际成本C′(Q)=eq\f(1,2)Q,Q=10时的边际成本是C′(10)=5。(2)由(1)得,平均成本eq\x\to(CQ)=eq\f(CQ,Q)=eq\f(100,Q)+eq\f(Q,4),而eq\f(100,Q)+eq\f(Q,4)≥2·eq\r(\f(100,Q)·\f(Q,4))=10,当且仅当eq\f(100,Q)=eq\f(Q,4),即Q=20时,等号成立,所以当产量Q为20时,平均成本最小,且平均成本的最小值是10.例3解(1)当x从1h变到4h时,产量y从f(1)=eq\f(81,20)g变到f(4)=eq\f(176,20)g,此时平均变化率为
eq\f(f4-f1,4-1)=eq\f(\f(176,20)-\f(81,20),3)=eq\f(19,12)(g/h),它表示从1h到4h这段时间这个人平均每小时生产eq\f(19,12)g产品.(2)f′(x)=eq\f(x,10)+eq\f(2,\r(x)),于是f′(1)=eq\f(21,10)(g/h),f′(4)=eq\f(7,5)(g/h),分别表示在第1小时和第4小时这个人每小时生产产品eq\f(21,10)g和eq\f(7,5)g.跟踪训练3解(1)x从0分钟变化到36分钟,y关于x的平均变化率为eq\f(f36-f0,36-0)=eq\f(12,36)=eq\f(1,3).它表示该考生前36分钟平均每分钟解答eq\f(1,3)道题.(2)∵f′(x)=eq\f(1,\r(x)),∴f′(64)=eq\f(1,8),f′(100)=eq\f(1,10)。它们分别表示该考生在第64分钟和第100分钟时每分钟可解答eq\f(1,8)和eq\f(1,10)道题.当堂训练1.D2。D3.36台/小时10:00时,工人装配晶体管收音机的速度为36台/小时4.85.解(1)当x从4变到8时,y关于x的平均变化率为eq\f(f8-f4,8-4)=eq\f(60--18,8-4)=19.5(万元/吨),它表示产量从4吨增加到8吨的过程中,每增加1吨产量,利润平均增加19。5万元.(2)f′(x)=-eq\f(1,4)x+21,于是f′(84)=0,f′(84)表示当产量为84吨时,利润增加的速度为0,也就是说当产量为84吨时,每多生产1吨产品,利润增加为0,即利润不变.问题导学思考(1)eq\f(W4-W1,4-1)=eq\f(40-7,3)=11J/s.(2)它表示从t=1s到t=4s这段时间内,这个人平均每秒做功11J。(3)W′(t)=3t2-8t+10,W′(1)=5表示在t=1s时每秒做功5J.梳理(1)做的功瓦特时间(2)降雨量导数(3)产量边际成本题型探究例1解(1)当t从1s变到3s时,s关于t的平均变化率为eq\f(Δs,Δt)=eq\f(s3-s1,3-1)=eq\f(27-5,3-1)=11m/s。它表示从t=1s到t=3s这段时间内,该质点平均每秒的位移是11m。(2)由导数公式表和导数的运算法则可得s′(t)=4t+3,则s′(1)=4+3=7m/s,s′(2)=4×2+3=11m/s.s′(1)表示的是该质点在t=1s时的瞬时速度,也就是该质点在t=1s这个时刻的瞬时速度为7m/s.s′(2)表示的是该质点在t=2s时的瞬时速度,也就是该质点在t=2s这个时刻的瞬时速度为11m/s。跟踪训练1解(1)当x从1变到8时,y关于x的平均变化率为eq\f(f8-f1,8-1)=eq\f(2-1,7)=eq\f(1,7)(m3/min).(2)f′(x)=eq\f(1,3)x-eq\f(2,3),于是f′(27)=eq\f(1,3)×27-eq\f(2,3)=eq\f(1,27)(m3/min),实际意义为当时间为27min时,水流量增加的速度为eq\f(1,27)m3/min,也就是当时间为27min时,每增加1min,水流量增加eq\f(1,27)m3.例2解当x从10件提高到20件时,总成本C从C(10)=2675元变到C(20)=3350元.此时总成本的平均改变量为eq\f(C20-C10,20-10)=67。5(元/件),其表示日产量从10件提高到20件时平均每件产品的总成本的改变量.引申探究1.解因为C′(x)=eq\f(1,2)x+60,所以C′(75)=eq\f(1,2)×75+60=97.5(元/件),它指的是当日产量为75件时,每多生产一件产品,需增加成本97.5元.2.解因为C′(x)=eq\f(1,2)x+a,所以日产量为75件时的边际成本大于97.5,即C′(75)=eq\f(1,2)×75+a>97.5,解得a〉60。跟踪训练2解(1)Q=10时的总成本C(10)=100+eq\f(102,4)=125;Q=10时的平均成本eq\x\to(C10)=eq\f(C10,10)=12.5.边际成本即成本函数C(Q)对产量Q的导数,故边际成本C′(Q)=eq\f(1,2)Q,Q=10时的边际成本是C′(10)=5.(2)由(1)得,平均成本eq\x\to(CQ)=eq\f(CQ,Q)=eq\f(100,Q)+eq\f(Q,4),而eq\f(100,Q)+eq\f(Q,4)≥2·eq\r(\f(100,Q)·\f(Q,4))=10,当且仅当eq\f(100,Q)=eq\f(Q,4),即Q=20时,等号成立,所以当产量Q为20时,平均成本最小,且平均成本的最小值是10。例3解(1)当x从1h变到4h时,产量y从f(1)=eq\f(81,20)g变到f(4)=eq\f(176,20)g,此时平均变化率为
eq\f(f4-f1,4-1)=eq\f(\f(176,20)-\f(81,20),3)=eq\f(19,12)(g/h),它表示从1h到4h这段时间这个人平均每小时生产eq\f(19,12)g产品.(2)f′(x)=eq\f(x,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训课件的种类
- 广安职业技术学院《多孔功能材料》2023-2024学年第一学期期末试卷
- 赣南卫生健康职业学院《规划理论与规划思想》2023-2024学年第一学期期末试卷
- 医院信息安全管理课件
- 赣南科技学院《量子力学专题分析》2023-2024学年第一学期期末试卷
- 甘孜职业学院《岩土工程设计》2023-2024学年第一学期期末试卷
- 《我储蓄与商业银行》课件
- 三年级数学上册八认识小数教案北师大版
- 三年级数学上册第八单元分数的初步认识第3课时分数的简单计算教案新人教版
- 三年级科学下册第一单元植物的生长变化第4课种子变成了幼苗教学材料教科版
- 上海市徐汇区上海小学二年级上册语文期末考试试卷及答案
- 精密制造行业研究分析
- 心源性晕厥护理查房课件
- 2022-2023学年浙江省杭州市萧山区五年级(上)期末科学试卷(苏教版)
- 船舶辅机:喷射泵
- 岩土工程勘察服务投标方案(技术方案)
- 疼痛护理课件
- 副院长兼总工程师的岗位说明书
- 农民专业合作社章程参考
- 财务会计制度及核算软件备案报告书
- 肌骨超声简介
评论
0/150
提交评论