2023年东营科技职业学院高职单招(数学)试题库含答案解析_第1页
2023年东营科技职业学院高职单招(数学)试题库含答案解析_第2页
2023年东营科技职业学院高职单招(数学)试题库含答案解析_第3页
2023年东营科技职业学院高职单招(数学)试题库含答案解析_第4页
2023年东营科技职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年东营科技职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是

______.答案:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故为:1.2.2.已知向量i=(1,0),j=(0,1).若向量i+λj与λi+j垂直,则实数λ=______.答案:由题意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj与λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故为:03.已知函数f(x)=x+3x+1(x≠-1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).

(Ⅰ)用数学归纳法证明bn≤(3-1)n2n-1;

(Ⅱ)证明Sn<233.答案:证明:(Ⅰ)当x≥0时,f(x)=1+2x+1≥1.因为a1=1,所以an≥1(n∈N*).下面用数学归纳法证明不等式bn≤(3-1)n2n-1.(1)当n=1时,b1=3-1,不等式成立,(2)假设当n=k时,不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)•1-(3-12)n1-3-12<(3-1)•11-3-12=233.故对任意n∈N*,Sn<233.4.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()

A.3

B.-2

C.2

D.不存在答案:B5.知x、y、z均为实数,

(1)若x+y+z=1,求证:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)证明略(2)x2+y2+z2的最小值为解析:(1)证明

因为(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因为(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值为.

14分6.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)7.过点P(0,-2)的双曲线C的一个焦点与抛物线x2=-16y的焦点相同,则双曲线C的标准方程是()

A.

B.

C.

D.答案:C8.(1+x2)5的展开式中x2的系数()A.10B.5C.52D.1答案:含x2项为C25(x2)2=10×x24=52x2,故选项为为C.9.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.10.若a为实数,,则a等于()

A.

B.-

C.2

D.-2答案:B11.如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l相交于A、B两点,过A、B分别作l的垂线与圆C过F的切线相交于点P和点Q,则必在以F为焦点,l为准线的同一条抛物线上.

(Ⅰ)建立适当的坐标系,求出该抛物线的方程;

(Ⅱ)对以上结论的反向思考可以得到另一个命题:“若过抛物线焦点F的直线与抛物线相交于P、Q两点,则以PQ为直径的圆一定与抛物线的准线l相切”请问:此命题是正确?试证明你的判断;

(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为平分依据)答案:(Ⅰ)过F作l的垂线交l于K,以KF的中点为原点,KF所在直线为x轴建立平面直角坐标系如图1,并设|KF|=p,则可得该抛物线的方程为

y2=2px(p>0);(Ⅱ)该命题为真命题,证明如下:如图2,设PQ中点为M,P、Q、M在抛物线准线l上的射影分别为A、B、D,∵PQ是抛物线过焦点F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位线,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ为直径的圆的圆心,∴圆M与l相切.(Ⅲ)选择椭圆类比(Ⅱ)所写出的命题为:“过椭圆一焦点F的直线与椭圆交于P、Q两点,则以PQ为直径的圆与椭圆相应的准线l相离”.此命题为真命题,证明如下:证明:设PQ中点为M,椭圆的离心率为e,则0<e<1,P、Q、M在相应准线l上的射影分别为A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位线,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圆M与准线l相离.选择双曲线类比(Ⅱ)所写出的命题为:“过双曲线一焦点F的直线与双曲线交于P、Q两点,则以PQ为直径的圆与双曲线相应的准线l相交”.此命题为真命题,证明如下:证明:设PQ中点为M,椭圆的离心率为e,则e>1,P、Q、M在相应准线l上的射影分别为A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位线,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圆M与准线l相交.12.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是()A.若a+b不是偶数,则a,b都不是奇数B.若a+b不是偶数,则a,b不都是奇数C.若a+b是偶数,则a,b都是奇数D.若a+b是偶数,则a,b不都是奇数答案:“a,b都是奇数”的否定是“a,b不都是奇数”,“a+b是偶数”的否定是“a+b不是偶数”,故命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故选B.13.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是(

)A.B.C.D.答案:B解析:解:因为在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,设变换为,将其代入方程中,得到x,y的关系式,对应相等可知,选B14.设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B15.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.16.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.

(Ⅰ)求∠ADF的度数;

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC为圆O的切线,∴∠B=∠EAC,又CD是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE为圆O的直径,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形内角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3317.已知原点O(0,0),则点O到直线4x+3y+5=0的距离等于

______.答案:利用点到直线的距离公式得到d=|5|42+32=1,故为1.18.经过两点A(-3,5),B(1,1

)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1

)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.19.P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为M,则点M的轨迹是()

A.椭圆

B.圆

C.双曲线

D.双曲线的一支答案:B20.学校成员、教师、后勤人员、理科教师、文科教师的结构图正确的是()

A.

B.

C.

D.

答案:A21.已知平面向量=(3,1),=(x,3),且⊥,则实数x的值为()

A.9

B.1

C.-1

D.-9答案:C22.设a1,a2,…,a2n+1均为整数,性质P为:对a1,a2,…,a2n+1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等求证:a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.答案:证明:①当a1,a2,…,a2n+1全部相等时,从中任意2n个数,将其分为两组,每组n个数,两组所有元素的和相等,故性质P成立.②下面证明:当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.反证法:假设a1,a2,…,a2n+1不全部相等,则其中至少有一个整数和其它的整数不同,不妨设此数为a1,若a1在取出的2n个数中,将其分为两组,每组n个数,则a1在的那个组所有元素的和与另一个组所有元素的和不相等,这与性质P矛盾,故假设不成立,所以,当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.综上,a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.23.已知矩阵A=12-14,向量a=74.

(1)求矩阵A的特征值λ1、λ2和特征向量α1、α2;

(2)求A5α的值.答案:(1)矩阵A的特征多项式为f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,当λ1=2时,得α1=21,当λ2=3时,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)24.已知曲线x=3cosθy=4sinθ(θ为参数,0≤θ≤π)上一点P,原点为0,直线P0的倾斜角为π4,则P点的坐标是______.答案:根据题意,曲线x=3cosθy=4sinθ(θ为参数,0≤θ≤π)消去参数化成普通方程,得x29+y216=1(y≥0)∵直线P0的倾斜角为π4,∴P点在直线y=x上,将其代入椭圆方程得x29+x216=1,解之得x=y=125(舍负),因此点P的坐标为(125,125)故为:(125,125)25.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.26.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案

如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为

对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.27.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(

A.2

B.5

C.2或5

D.或答案:A28.若直线的参数方程为(t为参数),则该直线的斜率为()

A.

B.2

C.1

D.-1答案:D29.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为______.答案:根据题意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},则有a=4,或a=4,a=4时,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合题意,舍去;a=2时,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.30.为了了解学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示,根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为()

A.300B.350C.420D.450答案:∵由图得,∴70.5公斤以上的人数的频率为:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人数为2000×0.181=362,故选B31.化简下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC32.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病

B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病

C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误

D.以上三种说法都不正确答案:D33.各项都为正数的数列{an},满足a1=1,an+12-an2=2.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)证明1a1+1a2+…+1an≤2n-1对一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2为首项为1,公差为2的等差数列,∴an2=1+(n-1)×2=2n-1,又an>0,则an=2n-1(Ⅱ)只需证:1+13+…+12n-1≤

2n-1.1当n=1时,左边=1,右边=1,所以命题成立.当n=2时,左边<右边,所以命题成立②假设n=k时命题成立,即1+13+…+12k-1≤2k-1,当n=k+1时,左边=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)

2=2(K+1)-1.命题成立由①②可知,1a1+1a2+…+1an≤2n-1对一切n∈N+恒成立.34.已知平面向量a,b,c满足a+b+c=0,且a与b的夹角为135°,c与b的夹角为120°,|c|=2,则|a|=______.答案:∵a+b+c=0∴三个向量首尾相接后,构成一个三角形且a与b的夹角为135°,c与b的夹角为120°,|c|=2,故所得三角形如下图示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故为:635.表示随机事件发生的可能性大小的数叫做该事件的______.答案:根据概率的定义:表示随机事件发生的可能性大小的数叫做该事件的概率;一个随机事件发生的可能性很大,那么P的值接近1又不等于1,故为:概率.36.设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=()

A.

B.

C.

D.答案:D37.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:2238.节假日时,国人发手机短信问候亲友已成为一种时尚,若小李的40名同事中,给其发短信问候的概率为1,0.8,0.5,0的人数分别是8,15,14,3(人),通常情况下,小李应收到同事问候的信息条数为()

A.27

B.37

C.38

D.8答案:A39.设i为虚数单位,若=b+i(a,b∈R),则a,b的值为()

A.a=0,b=1

B.a=1,b=0

C.a=1,b=1

D.a=,b=-1答案:B40.如图,设P、Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为()A.15B.45C.14D.13答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB

所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45为:45故选B.41.已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之间的大小关系为()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函数y=f(x)在区间(0,+∞)上是增函数∴|x|越大,函数值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故选A42.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(

A.

B.

C.

D.答案:B43.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()

A.0<a<1

B.a=1

C.a>1

D.以上均不对答案:C44.方程ax2+2x+1=0至少有一个负的实根的充要条件是()

A.0<a≤1

B.a<1

C.a≤1

D.0<a≤1或a<0答案:C45.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若AC=λAE+μAF,其中λ、μ∈R,则λ+μ=______.答案:解析:设AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故为:43.46.设集合A={1,2,3,4},集合B={1,3,5,7},则集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故选B.47.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估计每月的销售总额.现采用如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.其它方式的抽样答案:∵总体的个体比较多,抽样时某本50张的发票存根中随机抽一张,如15号,这是系统抽样中的分组,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.故选B.48.已知x、y之间的一组数据如下:

x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C49.已知a,b为正数,求证:≥.答案:证明略解析:1:∵a>0,b>0,∴≥,≥,两式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲证≥,即证≥,只要证

≥,只要证

≥,即证

≥,只要证a3+b3≥ab(a+b),只要证a2+b2-ab≥ab,即证(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名师指引】当要证明的不等式形式上比较复杂时,常通过分析法寻求证题思路.“分析法”与“综合法”是数学推理中常用的思维方法,特别是这两种方法的综合运用能力,对解决实际问题有重要的作用.这两种数学方法是高考考查的重要数学思维方法.50.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,则实数λ等于()

A.

B.

C.

D.答案:D第2卷一.综合题(共50题)1.如图,从圆O外一点A引切线AD和割线ABC,AB=3,BC=2,则切线AD的长为______.答案:由切割线定理可得AD2=AB?AC=3×5,∴AD=15.故为15.2.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()

A.ρ=sinθ

B.ρ=cosθ

C.ρ=2sinθ

D.ρ=2cosθ答案:D3.点M(4,)化成直角坐标为()

A.(2,)

B.(-2,-)

C.(,2)

D.(-,-2)答案:B4.(x3+1xx)10的展开式中的第四项是______.答案:由二项式定理的通项公式可知(x3+1xx)10的展开式中的第四项是:C310(x3)7(1xx)3=120x16?x.故为:120x16?x.5.若复数z=(2-i)(a-i),(i为虚数单位)为纯虚数,则实数a的值为______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若复数z=(2-i)(a-i)为纯虚数,∴2a-1=0,a+2≠0,∴a=12故为:126.下图是由哪个平面图形旋转得到的(

)答案:A7.如图,l1、l2、l3是同一平面内的三条平行直线,l1与l2间的距离是1,l2与l3间的距离是2,正三角形ABC的三顶点分别在l1、l2、l3上,则△ABC的边长是()

A.2

B.

C.

D.

答案:D8.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.9.已知函数f(x)=

-x+1,x<0x-1,x≥0,则不等式x+(x+1)f(x+1)≤1的解集是()

A.[-1,

2-1]B.(-∞,1]C.(-∞,

2-1]D.[-

2-1,

2-1]答案:C解析:由题意x+(x+1)f(x+1)=10.圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.

(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;

(2)求经过圆O1,圆O2交点的直线的直角坐标方程.答案:以有点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0为圆O1的直角坐标方程.….(3分)同理x2+y2+4y=0为圆O2的直角坐标方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圆O1,圆O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.…(10分)11.把两条直线的位置关系填入结构图中的M、N、E、F中,顺序较为恰当的是()

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C12.在(1+2x)5的展开式中,x2的系数等于______.(用数字作答)答案:由于(1+2x)5的展开式的通项公式为Tr+1=Cr5?(2x)r,令r=2求得x2的系数等于C25×22=40,故为40.13.定点F1,F2,且|F1F2|=8,动点P满足|PF1|+|PF2|=8,则点P的轨迹是()A.椭圆B.圆C.直线D.线段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①当点P不在直线F1F2上时,根据三角形两边之和大于第三边,得|PF1|+|PF2|>|F1F2|,不符合题意;②当点P在直线F1F2上时,若点P在F1、F2两点之外时,可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合题意;若点P在F1、F2两点之间(或与F1、F2重合)时,可得|PF1|+|PF2|=|F1F2|,符合题意.综上所述,得点P在直线F1F2上且在F1、F2两点之间或与F1、F2重合,故点P的轨迹是线段F1F2.故选:D14.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且AF=λFB(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.

(I)证明FM.AB为定值;

(II)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.答案:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=-1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2-4kx-4=0,判别式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲线4y=x2上任意一点斜率为y'=x2,则易得切线AM,BM方程分别为y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)从而,FM=(x1+x22,-2),AB(x2-x1,y2-y1)FM•AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命题得证.这就说明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因为|AF|、|BF|分别等于A、B到抛物线准线y=-1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且当λ=1时,S取得最小值4.15.(理科)若随机变量ξ~N(2,22),则D(14ξ)的值为______.答案:解;∵随机变量ξ服从正态分布ξ~N(2,22),∴可得随机变量ξ方差是4,∴D(14ξ)的值为142D(ξ)=142×4=14.故为:14.16.已知曲线,

θ∈[0,2π)上一点P到点A(-2,0)、B(2,0)的距离之差为2,则△PAB是()

A.锐角三角形

B.钝角三角形

C.直角三角形

D.等腰三角形答案:C17.若向量的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O为空间任一点),则能使向量成为空间一组基底的关系是()

A.

B.

C.

D.答案:C18.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()

A.

B.2

C.

D.答案:C19.若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为______.答案:曲线的极坐标方程为ρ=2sinθ+4cosθ,即ρ2=2ρsinθ+4ρcosθ,即x2+y2=2y+4x,化简为(x-2)2+(y-1)2=5,故为(x-2)2+(y-1)2=5.20.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)21.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于(

A.

B.

C.

D.答案:A22.如图所示,已知点P为菱形ABCD外一点,且PA⊥面ABCD,PA=AD=AC,点F为PC中点,则二面角CBFD的正切值为()

A.

B.

C.

D.

答案:D23.已知向量=(1,2),=(2,x),且=-1,则x的值等于()

A.

B.

C.

D.答案:D24.某小组有3名女生、4名男生,从中选出3名代表,要求至少女生与男生各有一名,共有______种不同的选法.(要求用数字作答)答案:由题意知本题是一个分类计数问题,要求至少女生与男生各有一名有两个种不同的结果,即一个女生两个男生和一个男生两个女生,∴共有C31C42+C32C41=30种结果,故为:3025.函数f(x)=log2(3x+1)的值域为()

A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R.因此,该函数的定义域为R,原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数.由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的.根据指数函数的性质可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故选A.解析:试题分析26.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.27.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:20328.若圆O1方程为(x+1)2+(y+1)2=4,圆O2方程为(x-3)2+(y-2)2=1,则方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的轨迹是()

A.经过两点O1,O2的直线

B.线段O1O2的中垂线

C.两圆公共弦所在的直线

D.一条直线且该直线上的点到两圆的切线长相等答案:D29.mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在两坐标轴上的截距分别为1m,1n.则mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为12|mn|.故为12|mn|.30.向量化简后等于()

A.

B.

C.

D.答案:C31.将5位志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方案有______种(用数字作答).答案:由题意,先分组,再到4个路口协助交警执勤,则不同的分配方案有C25A44=240种故为:240.32.直线l与抛物线y2=2x相交于A、B两点,O为抛物线的顶点,若OA⊥OB.证明:直线l过定点.答案:证明:设点A,B的坐标分别为(x1,y1),(x2,y2)(I)当直线l有存在斜率时,设直线方程为y=kx+b,显然k≠0且b≠0.(2分)联立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由题意:x1x2=b2k2,&

y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直线l的方程为:y=kx-2k=k(x-2),故直线过定点(2,0)(11分)(II)当直线l不存在斜率时,设它的方程为x=m,显然m>0联立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直线l方程为:x=2,故直线过定点(2,0)综合(1)(2)可知,满足条件的直线过定点(2,0).33.过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()

A.30°

B.45°

C.60°

D.90°答案:C34.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的种序框图计算该数列的第10项,则判断框内的条件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B35.等于()

A.

B.

C.

D.答案:B36.如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=23,若∠CAP=30°,则⊙O的直径AB=______.答案:连接BC,设圆的直径是x则三角形ABC是一个含有30°角的三角形,∴BC=12AB,三角形BPC是一个等腰三角形,BC=BP=12AB,∵PC是圆的切线,PA是圆的割线,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故为:437.满足条件|2z+1|=|z+i|的复数z在复平面上对应点的轨迹是______.答案:设复数z在复平面上对应点的坐标为(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化简可得x2+

y2+43x

=

0,表示一个圆,故为圆.38.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(

)。答案:40或60(不唯一)39.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B40.选做题:如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于______.答案:连接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一个等边三角形,∴OA=AB=4,∴⊙O的面积是16π故为16π41.棱长为a的正四面体中,AB•BC+AC•BD=______.答案:棱长为a的正四面体中,AB=BC=a,且AB与BC的夹角为120°,AC⊥BD.∴AB•BC+AC•BD=a•acos120°+0=-a22,故为:-12.42.过点P(2,3)且以a=(1,3)为方向向量的直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得a=(1,3)与a=(1,k)互相平行∴11=k3⇒k=3,所以直线l的点斜式方程为:y-3=3(x-2)化成一般式:3x-y-3=0故为:3x-y-3=0.43.已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则f(x)=0的所有实数根之和为______.答案:∵函数y=f(x)是偶函数∴其图象关于y轴对称∴其图象与x轴有四个交点也关于y轴对称∴方程f(x)=0的所有实根之和为0故为:044.求两条平行直线3x-4y-11=0与6x-8y+4=0的距离是()

A.3

B.

C.

D.4答案:B45.直线l1:x+3=0与直线l2:x+3y-1=0的夹角的大小为______.答案:由于直线l1:x+3=0的斜率不存在,故它的倾斜角为90°,直线l2:x+3y-1=0的斜率为-33,故它的倾斜角为150>,故这两条直线的夹角为60°,故为60°.46.关于x的方程ax+b=0,当a,b满足条件______

时,方程的解集是有限集;满足条件______

时,方程的解集是无限集;满足条件______

时,方程的解集是空集.答案:关于x的方程ax+b=0,有一个解时,为有限集,所以a,b满足条件是:a≠0,b∈R;满足条件a=0,b=0时,方程有无数组解,方程的解集是无限集;满足条件

a=0,b≠0

时,方程无解,方程的解集是空集.故为:a≠0,b∈R;a=0,b=0;

a=0,b≠0.47.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故为:448.b1是[0,1]上的均匀随机数,b=3(b1-2),则b是区间______上的均匀随机数.答案:∵b1是[0,1]上的均匀随机数,b=3(b1-2)∵b1-2是[-2,-1]上的均匀随机数,∴b=3(b1-2)是[-6,-3]上的均匀随机数,故为:[-6,-3]49.设矩阵M=.32-121232.的逆矩阵是M-1=.abcd.,则a+c的值为______.答案:由题意,矩阵M的行列式为.32-121232.=32×32+12×12=1∴矩阵M=.32-121232.的逆矩阵是M-1=.3212-1232.∴a+c=3-12故为3-1250.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是[

]

A.4

B.-4

C.-5

D.6答案:A第3卷一.综合题(共50题)1.平面内有两个定点F1(-5,0)和F2(5,0),动点P满足条件|PF1|-|PF2|=6,则动点P的轨迹方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,点P的轨迹是以F1、F2为焦点的双曲线右支,得c=5,2a=6,∴a=3,∴b2=16,故动点P的轨迹方程是x29-y216=1(x≥3).故选D.2.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A3.已知a>0,且a≠1,解关于x的不等式:

答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<04.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因为k=5,结束循环,输出结果S=2+4+6+8=20.故为:20.5.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B6.“∵四边形ABCD为矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提为()

A.正方形都是对角线相等的四边形

B.矩形都是对角线相等的四边形

C.等腰梯形都是对角线相等的四边形

D.矩形都是对边平行且相等的四边形答案:B7.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共线;④共线向量一定相等;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量,其中正确的命题是______.答案:∵平行向量即为共线向量其定义是方向相同或相反;相等向量的定义是模相等、方向相同;①平行向量不一定相等;故错;②不相等的向量也可能不平行;故错;③相等向量一定共线;正确;④共线向量不一定相等;故错;⑤长度相等的向量方向相反时不是相等向量;故错;⑥平行于零向量的两个向量是不一定是共线向量,故错.其中正确的命题是③.故为:③.8.F1,F2是椭圆x2a2+y2b2=1的两个焦点,点P是椭圆上任意一点,从F1引∠F1PF2的外角平分线的垂线,交F2P的延长线于M,则点M的轨迹是______.答案:设从F1引∠F1PF2的外角平分线的垂线,垂足为R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分线∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根据椭圆的定义,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即动点M到点F2的距离为定值2a,因此,点M的轨迹是以点F2为圆心,半径为2a的圆.故为:以点F2为圆心,半径为2a的圆.9.函数y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因为函数y=5x,x∈N+的定义域为正整数集N+,所以当自变量x取1,2,3,4,…时,其相应的函数值y依次是5,52,53,54,….因此,函数y=5x,x∈N+的值域是{5,52,53,54,…}.故选D.10.设a,b∈R,ab≠0,则直线ax-y+b=0和曲线bx2+ay2=ab的大致图形是()

A.

B.

C.

D.

答案:B11.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()

A.40

B.30

C.20

D.12答案:A12.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:22313.已知a、b是不共线的向量,AB=λa+b,AC=a+μb(λ,μ∈R),则A、B、C三点共线的充要条件是______.答案:由于AB,AC有公共点A,∴若A、B、C三点共线则AB与AC共线即存在一个实数t,使AB=tAC即λ=at1=μt消去参数t得:λμ=1反之,当λμ=1时AB=1μa+b此时存在实数1μ使AB=1μAC故AB与AC共线又由AB,AC有公共点A,∴A、B、C三点共线故A、B、C三点共线的充要条件是λμ=114.设U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}15.某市为抽查控制汽车尾气排放的执行情况,选择了抽取汽车车牌号的末位数字是6的汽车进行检查,这样的抽样方式是(

A.抽签法

B.简单随机抽样

C.分层抽样

D.系统抽样答案:D16.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()

A.

B.

C.

D.

答案:A17.若抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,则p的值为()

A.2

B.4

C.8

D.4答案:C18.已知|a=2,|b|=1,a与b的夹角为60°,求向量.a+2b与2a+b的夹角.答案:由题意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,设a+2b与2a+b夹角为θ,则cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,则θ=arccos571419.已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,π3),则|CP|=______.答案:圆的极坐标方程为ρ=4cosθ,圆的方程为:x2+y2=4x,圆心为C(2,0),点P的极坐标为(4,π3),所以P的直角坐标(2,23),所以|CP|=(2-2)2+(23-0)2=23.故为:23.20.=(2,1),=(3,4),则向量在向量方向上的投影为()

A.

B.

C.2

D.10答案:C21.复数,且A+B=0,则m的值是()

A.

B.

C.-

D.2答案:C22.设非零向量、、满足||=||=||,+=,则<,>=()

A.150°

B.120°

C.60°

D.30°答案:B23.已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.

(1)m取何值时两圆外切?

(2)m取何值时两圆内切?

(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.答案:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d=(5-1)2+(6-3)2=5,两圆的半径之和为11+61-m,由两圆的半径之和为11+61-m=5,可得m=25+1011.(2)由两圆的圆心距d=(5-1)2+(6-3)2=5等于两圆的半径之差为|11-61-m|,即|11-61-m|=5,可得

11-61-m=5(舍去),或

11-61-m=-5,解得m=25-1011.(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0.第一个圆的圆心(1,3)到公共弦所在的直线的距离为d=|4+9-23|5=2,可得弦长为211-4=27.24.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是______.答案:由题意知本题是一个古典概型,试验发生包含的基本事件有C52=10种结果,其中至少有一个红球的事件包括C22+C21C31=7个基本事件,根据古典概型公式得到P=710,故为:710.25.若有以下说法:

①相等向量的模相等;

②若a和b都是单位向量,则a=b;

③对于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,则a∥c.

其中正确的说法序号是()A.①③B.①④C.②③D.③④答案:根据定义,大小相等且方向相同的两个向量相等.因此相等向量的模相等,故①正确;因为单位向量的模等于1,而方向不确定.所以若a和b都是单位向量,则不一定有a=b成立,故②不正确;根据向量加法的三角形法则,可得对于任意的a和b,都有|a+b|≤|a|+|b|成立,当且仅当a和b方向相同时等号成立,故③正确;若b=0,则有a∥b且c∥b,但是a∥c不成立,故④不正确.综上所述,正确的命题是①③故选:A26.如图是《集合》的知识结构图,如果要加入“子集”,那么应该放在()

A.“集合”的下位

B.“含义与表示”的下位

C.“基本关系”的下位

D.“基本运算”的下位

答案:C27.在数学归纳法证明多边形内角和定理时,第一步应验证()

A.n=1成立

B.n=2成立

C.n=3成立

D.n=4成立答案:C28.已知=2+i,则复数z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B29.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是()A.若a+b不是偶数,则a,b都不是奇数B.若a+b不是偶数,则a,b不都是奇数C.若a+b是偶数,则a,b都是奇数D.若a+b是偶数,则a,b不都是奇数答案:“a,b都是奇数”的否定是“a,b不都是奇数”,“a+b是偶数”的否定是“a+b不是偶数”,故命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故选B.30.下列在曲线上的点是()

A.

B.

C.

D.答案:D31.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.

答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.32.设P,Q为△ABC内的两点,且AP=mAB+nAC

(m,n>0)AQ=pAB+qAC

(p,q>0),则△ABP的面积与△ABQ的面积之比为______.答案:设P到边AB的距离为h1,Q到边AB的距离为h2,则△ABP的面积与△ABQ的面积之比为h1h2,设AB边上的单位法向量为e,AB?e=0,则h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故为n:q.33.当x∈N+时,用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根据指数函数的性质得,当x∈N+时,(12)x<1,2x>1,则2x>(12)x,且2x<3x,则(12)x>(13)x,故为:<、>、<、>、<.34.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.35.以A(1,5)、B(5,1)、C(-9,-9)为顶点的三角形是()

A.等边三角形

B.等腰三角形

C.不等边三角形

D.直角三角形答案:B36.对于非零的自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴相交于An,Bn两点,若以|AnBn|表示这两点间的距离,则|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值

等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故为:20092010.37.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故为:329.38.将函数="2x"+1的图像按向量平移得函数=的图像则

A=(1)B=(1,1)C=()

D(1,1)答案:C解析:分析:本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故=(-1,-1).解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x-h+1+k∴∴∴=(-1,-1)故答案为:C.39.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论