下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市成才中学2022年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.参考答案:C略2.已知弧度为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是(
)A.2
B.
C.
D.参考答案:B3.两平行直线与之间的距离为A. B. C. D.
参考答案:D4.集合,,若,则的值为A.0
B.1
C.2
D.4参考答案:D5.下列函数,在其定义域内既是奇函数又是增函数的是(
)A.
B.
C.
D.参考答案:A6.一梯形的直观图是如图是欧式的等腰梯形,且直观图OA′B′C′的面积为2,则原梯形的面积为()A.2 B.2 C.4 D.4参考答案:D【考点】斜二测法画直观图.【分析】把该梯形的直观图还原为原来的梯形,画出图形,结合图形解答问题即可.【解答】解:把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a,下底为b,高为h,则直观图中等腰梯形的高为h′=hsin45°;∵等腰梯形的体积为(a+b)h′=(a+b)?hsin45°=2,∴(a+b)?h==4∴该梯形的面积为4.故选:D.【点评】本题考查了平面图形的直观图的画法与应用问题,解题时应明确直观图与原来图形的区别和联系,是基础题目.7.若对于任意都有,则函数的图象的对称中心为()A. B.C. D.参考答案:D∵对任意x∈R,都有f(x)+2f(–x)=3cosx–sinx①,用–x代替x,得f(–x)+2f(x)=3cos(–x)–sin(–x),即f(–x)+2f(x)=3cosx+sinx②;①②联立,解得f(x)=sinx+cosx,所以函数y=f(2x)–cos2x=sin2x+cos2x–cos2x=sin2x,图象的对称中心为(,0),k∈Z,故选D.8.设集合S={A0,A1,A2,A3,A4,A5},在S上定义运算“⊕”为:Ai⊕Aj=Ak,其中k为i+j被4除的余数,i,j=0,1,2,3,4,5.则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为(
)A.1 B.2 C.3 D.4参考答案:C【考点】整除的基本性质.【专题】压轴题;探究型.【分析】本题为信息题,学生要读懂题意,运用所给信息式解决问题,对于本题来说,可用逐个验证法【解答】解:当x=A0时,(x⊕x)⊕A2=(A0⊕A0)⊕A2=A0⊕A2=A2≠A0当x=A1时,(x⊕x)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A4=A0当x=A2时,(x⊕x)⊕A2=(A2⊕A2)⊕A2=A0⊕A2=A2当x=A3时,(x⊕x)⊕A2=(A3⊕A3)⊕A2=A2⊕A2=A0=A0当x=A4时,(x⊕x)⊕A2=(A4⊕A4)⊕A2=A0⊕A2=A2≠A1当x=A5时,(x⊕x)⊕A2=(A5⊕A5)⊕A2=A2⊕A2=A0则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为:3个.故选C.【点评】本题考查学生的信息接收能力及应用能力,对提高学生的思维能力很有好处9.已知,则的值为(
)A、a
B、-a
C、
D、参考答案:A10.若,则的表达式为(
)A.
B.
C.
D.参考答案:
D
解析:由得二、填空题:本大题共7小题,每小题4分,共28分11.用“二分法”求方程在区间内的实根,取区间中点为,那么下一个有根的区间是
。参考答案:
解析:令12.一元二次不等式的解集是,则的值是(
)A.10
B.-10
C.14
D.-14参考答案:B略13.对于定义在R上的函数f(x),有如下四个命题:①若f(0)=0,则函数f(x)是奇函数;
②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)在R上是增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数;其中正确的命题为
参考答案:②④14.设函数的图象为C,则如下结论中正确的是(写出所有正确结论的编号).①图象C关于直线对称;②图象C关于点对称;③函数f(x)在区间内是减函数;④把函数的图象上点的横坐标压缩为原来的一半(纵坐标不变)可以得到图象C.参考答案:①②【考点】命题的真假判断与应用.【分析】对于①把代入函数表达式,判断函数是否取得最值即可判断正误;对于②把x=代入函数表达式,判断函数是否取得0,即可判断正误;对于③求出函数的单调减区间,判断正误;对于④通过函数图象的周期变换,即可判断正误.【解答】解:①因为时,函数f(x)=3sin(2×﹣)=3sin=﹣3,所以①正确;②因为x=时,函数f(x)=3sin(2×﹣)=3sinπ=0,所以②正确;③因为+2kπ≤2kπ+,即x∈[+kπ,+kπ],k∈Z,函数f(x)=3sin(2x﹣)在区间内不是减函数,故不正确;④把函数的图象上点的横坐标压缩为原来的一半(纵坐标不变)可以得到图象对应的函数解析式为y=3sin(2x﹣),故不正确.故答案为:①②.15.在中,内角,,所对的边分别为,,,已知,,,则
.参考答案:416.已知向量,,且与的夹角为钝角,则实数的取值范围是_________;
参考答案:且
略17.设△ABC的面积为S,2S+?=0.若||=,则S的最大值为.参考答案:【考点】平面向量数量积的运算.【分析】根据面积公式列方程解出A,使用余弦定理和基本不等式得出AB?AC的最小值,即可得出面积的最小值.【解答】解:∵2S+?=0,∴|AB||AC|sinA+|AB||AC|cosA=0,∴tanA=﹣,∴A=.由余弦定理得cosA===﹣,∴AB2+AC2=﹣AB?AC+3≥2AB?AC,∴AB?AC≤1.∴S=AB?ACsinA=AB?AC≤.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分16分)已知函数.(1)当m=0时,求在区间上的取值范围;(2)当tanα=2时,,求实数m的值。参考答案:略19.证明:函数是偶函数,且在上是减少的。(13分)参考答案:证明:函数的定义域为,对于任意的,都有,∴是偶函数.(Ⅱ)证明:在区间上任取,且,则有,∵,,∴即
∴,即在上是减少的.略20.已知集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0},(Ⅰ)若B={2},求实数a的值;(Ⅱ)若A∪B=A,求实数a的取值范围.参考答案:考点:函数的零点;并集及其运算.专题:函数的性质及应用.分析:由x2﹣3x+2=0解得x=1,2.可得A={1,2}.(Ⅰ)由B={2},可得,解得即可.(Ⅱ)由A∪B=A,可得B?A.分类讨论:B=?,△<0,解得即可.若B={1}或{2},则△=0,解得即可.若B={1,2},可得,此方程组无解.解答:解:由x2﹣3x+2=0解得x=1,2.∴A={1,2}.(Ⅰ)∵B={2},∴解得a=﹣3.(Ⅱ)∵A∪B=A,∴B?A.1°B=?,△=8a+24<0,解得a<﹣3.2°若B={1}或{2},则△=0,解得a=﹣3,此时B={2},符合题意.3°若B={1,2},∴,此方程组无解.综上:a≤﹣3.∴实数a的取值范围是(﹣∞,﹣3].点评:本题考查了集合之间的关系、一元二次方程的解与判别式△的关系,属于中档题.21.探究函数的最小值,并确定取得最小值时x的值.列表如下:x…0.511.51.71.922.12.22.33457…y…8.554.174.054.00544.0054.024.044.354.87.57…请观察表中y值随x值变化的特点,完成以下的问题.函数在区间(0,2)上递减;函数在区间
上递增.当 时,
.证明:函数在区间(0,2)递减.思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)参考答案:解析:;当………………4分证明:设是区间,(0,2)上的任意两个数,且
又函数在(0,2)上为减函数.……12分思考:…………14分22.如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年绿色生态建筑农民工劳动合同示范3篇
- 二零二五年度防盗门行业市场分析报告合同2篇
- 二零二五版加油站智能监控与数据分析合同3篇
- 二零二五白云区观白活力中心房地产合作开发投资框架合同2篇
- 二零二五年度智能家电产品研发与销售合同3篇
- 二零二五版养殖企业与个体养牛户合作合同3篇
- 二零二五版数据中心机房租赁及数据备份服务合同2篇
- 基于2025年度5G网络技术研发合作合同2篇
- 二零二五版拌和站产品质量追溯与售后服务合同2篇
- 二零二五版建筑工程土方中介合同纠纷调解机制3篇
- 物业费收取协议书模板
- 电工(中级工)理论知识练习题(附参考答案)
- 工业设计概论试题
- 2024-2030年中国商务服务行业市场现状调查及投资前景研判报告
- 起重机的维护保养要求与月度、年度检查记录表
- 消防设施维护保养记录表
- 城区生活垃圾填埋场封场项目 投标方案(技术方案)
- 垃圾分类巡检督导方案
- 大一护理生涯发展展示
- 五年级上册数学应用题100题及答案
- 新生儿急救与复苏培训
评论
0/150
提交评论