高中物理粤教版第四章机械能和能源 第4章章末分层突破_第1页
高中物理粤教版第四章机械能和能源 第4章章末分层突破_第2页
高中物理粤教版第四章机械能和能源 第4章章末分层突破_第3页
高中物理粤教版第四章机械能和能源 第4章章末分层突破_第4页
高中物理粤教版第四章机械能和能源 第4章章末分层突破_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章末分层突破[自我校对]①位移②Fscosα③能量④eq\f(1,2)mv2⑤mgh⑥有关⑦重力功的计算方法1.根据定义式求功若恒力做功,可用定义式W=Flcosα求恒力的功,其中F、l为力的大小和位移的大小,α为力F与位移l方向之间的夹角,且0°≤α≤180°.2.利用功率求功若某力做功或发动机的功率P一定,则在时间t内做的功为W=Pt.3.根据功能关系求功根据以上功能关系,若能求出某种能量的变化,就可以求出相应的功.一质量为eq\f(4,3)kg的物体放在水平地面上,如图4­1甲所示,已知物体所受水平拉力F随时间t的变化情况如图乙所示,物体相应的速度v随时间t的变化关系如图丙所示.求:图4­1(1)0~6s内合力做的功.(2)前10s内,拉力和摩擦力所做的功.【解析】(1)由v­t图象可知物体初速度为零,6s末的速度为3m/s,根据动能定理:W=eq\f(1,2)mv2-0,故合力做的功W=eq\f(1,2)×eq\f(4,3)×32J=6J.(2)由图乙知物体在2~6s、6~8s内的位移分别为x1=6m、x2=6m,故前10s内拉力做的功:W1=F1x1+F2x2=3×6J+2×6J=30J.由图乙知,在6~8s时间内,物体做匀速运动,故摩擦力Ff=2N.根据v­t图象知在10s内物体的总位移:x′=eq\f(8-6+10-2,2)×3m=15m所以W=-Ffx′=-2×15J=-30J.【答案】(1)6J(2)30J-30J摩擦力做功的分析1.滑动摩擦力和静摩擦力都可以对物体不做功:如图4­2所示,物块A从斜槽上滑下,最后停在平板车B上,而平板车始终未动,在物块A与平板车B相对滑动的过程中,平板车B所受的滑动摩擦力不做功,平板车受地面的静摩擦力也不做功.图4­22.滑动摩擦力和静摩擦力都可以对物体做负功:(1)如图4­2中,物块A相对于平板车B滑动的过程中,物块A所受的滑动摩擦力对物块做负功.(2)如图4­3所示,在一与水平方向夹角为θ的传送带上,有一物体A随传送带一起匀速向下运动,静摩擦力对物体A做负功.图4­33.滑动摩擦力和静摩擦力都可以对物体做正功:(1)如图4­2中,如果平板车不固定,且地面光滑,在物块A滑上平板车B的过程中,物块对平板车的滑动摩擦力与平板车的运动方向相同,滑动摩擦力对平板车做正功.(2)如图4­3中,如果物体A随传送带一起匀速向上运动,物块A所受静摩擦力与物体的位移方向一致,静摩擦力对物体A做正功.(多选)如图4­4所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是()图4­4A.始终不做功B.先做负功后做正功C.先做正功后不做功D.先做负功后不做功【解析】设传送带运转的速度大小为v1,物体刚滑上传送带时的速度大小为v2.(1)当v1=v2时,物体与传送带间无摩擦力,传送带对物体始终不做功.(2)当v1<v2时,物体相对于传送带向右运动,物体受到的滑动摩擦力向左,物体先匀减速运动至速度为v1才匀速运动,故传送带对物体先做负功后不做功.(3)当v1>v2时,物体先匀加速运动直至速度增为v1才匀速运动,故传送带对物体先做正功后不做功.【答案】ACD求解动力学问题的两种思路1.两条基本思路(1)利用牛顿运动定律结合运动学公式求解.利用牛顿第二定律可建立合力与加速度之间的关系,利用运动学公式可计算t、x、v、a等物理量.或是根据运动学公式和牛顿定律去求解受力情况.(2)利用功能观点求解,即利用动能定理、机械能守恒定律、重力做功与重力势能关系等规律分析求解.2.解题思路的比较(1)用功能观点解题,只涉及物体的初、末状态,不需要关注过程的细节,解题简便.(2)用牛顿第二定律及运动学公式解题,可分析运动过程中的加速度、力的瞬时值,也可分析位移、时间等物理量,即可分析运动过程的细节.一质量m=kg的物体以v0=20m/s的初速度从倾角α=30°的斜坡底端沿斜坡向上运动.当物体向上滑到某一位置时,其动能减少了ΔEk=18J,机械能减少了ΔE=3J.不计空气阻力,重力加速度g取10m/s2,求:(1)物体向上运动时加速度的大小;(2)物体返回斜坡底端时的动能.【解析】(1)设物体运动过程中所受的摩擦力为f,向上运动的加速度的大小为a,由牛顿第二定律可知a=eq\f(mgsinα+f,m) ①设物体的动能减少ΔEk时,在斜坡上运动的距离为s,由功能关系可知ΔEk=(mgsinα+f)s ②ΔE=fs ③联立①②③式,并代入数据可得a=6m/s2. ④(2)设物体沿斜坡向上运动的最大距离为sm,由运动学规律可得sm=eq\f(v\o\al(2,0),2a) ⑤设物体返回斜坡底端时的动能为Ek,由动能定理得Ek=(mgsinα-f)sm ⑥联立①④⑤⑥各式,并代入数据可得Ek=80J.【答案】(1)6m/s2(2)80J1.小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图4­5所示.将两球由静止释放.在各自轨迹的最低点,()图4­5A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度【解析】两球由静止释放到运动到轨迹最低点的过程中只有重力做功,机械能守恒,取轨迹的最低点为零势能点,则由机械能守恒定律得mgL=eq\f(1,2)mv2,v=eq\r(2gL),因LP<LQ,则vP<vQ,又mP>mQ,则两球的动能无法比较,选项A、B错误;在最低点绳的拉力为F,则F-mg=meq\f(v2,L),则F=3mg,因mP>mQ,则FP>FQ,选项C正确;向心加速度a=eq\f(F-mg,m)=2g,选项D错误.【答案】C2.(多选)如图4­6所示,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()图4­6A.a=eq\f(2mgR-W,mR) B.a=eq\f(2mgR-W,mR)C.N=eq\f(3mgR-2W,R) D.N=eq\f(2mgR-W,R)【解析】质点P下滑到最低点的过程中,由动能定理得mgR-W=eq\f(1,2)mv2,则速度v=eq\r(\f(2mgR-W,m)),最低点的向心加速度a=eq\f(v2,R)=eq\f(2mgR-W,mR),选项A正确,选项B错误;在最低点时,由牛顿第二定律得N-mg=ma,N=eq\f(3mgR-2W,R),选项C正确,选项D错误.【答案】AC3.如图4­7所示,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道,质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()图4­7A.W=eq\f(1,2)mgR,质点恰好可以到达Q点B.W>eq\f(1,2)mgR,质点不能到达Q点C.W=eq\f(1,2)mgR,质点到达Q点后,继续上升一段距离D.W<eq\f(1,2)mgR,质点到达Q点后,继续上升一段距离【解析】设质点到达N点的速度为vN,在N点质点受到轨道的弹力为FN,则FN-mg=eq\f(mv\o\al(2,N),R),已知FN=Feq\o\al(′,N)=4mg,则质点到达N点的动能为EkN=eq\f(1,2)mveq\o\al(2,N)=eq\f(3,2)mgR.质点由开始至N点的过程,由动能定理得mg·2R+Wf=EkN-0,解得摩擦力做的功为Wf=-eq\f(1,2)mgR,即克服摩擦力做的功为W=-Wf=eq\f(1,2)mgR.设从N到Q的过程中克服摩擦力做功为W′,则W′<W.从N到Q的过程,由动能定理得-mgR-W′=eq\f(1,2)mveq\o\al(2,Q)-eq\f(1,2)mveq\o\al(2,N),即eq\f(1,2)mgR-W′=eq\f(1,2)mveq\o\al(2,Q),故质点到达Q点后速度不为0,质点继续上升一段距离.选项C正确.【答案】C4.(多选)如图4­8,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.已知在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<eq\f(π,2).在小球从M点运动到N点的过程中,()图4­8A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差【解析】在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<eq\f(π,2),则小球在M点时弹簧处于压缩状态,在N点时弹簧处于拉伸状态,小球从M点运动到N点的过程中,弹簧长度先缩短,当弹簧与竖直杆垂直时弹簧达到最短,这个过程中弹力对小球做负功,然后弹簧再伸长,弹力对小球开始做正功,当弹簧达到自然伸长状态时,弹力为零,再随着弹簧的伸长弹力对小球做负功,故整个过程中,弹力对小球先做负功,再做正功,后再做负功,选项A错误.在弹簧与杆垂直时及弹簧处于自然伸长状态时,小球加速度等于重力加速度,选项B正确.弹簧与杆垂直时,弹力方向与小球的速度方向垂直,则弹力对小球做功的功率为零,选项C正确.由机械能守恒定律知,在M、N两点弹簧弹性势能相等,在N点的动能等于从M点到N点重力势能的减小值,选项D正确.【答案】BCD5.如图4­9所示,在竖直平面内有由eq\f(1,4)圆弧AB和eq\f(1,2)圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为eq\f(R,2).一小球在A点正上方与A相距eq\f(R,4)处由静止开始自由下落,经A点沿圆弧轨道运动.【导学号:35390081】图4­9(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.【解析】(1)设小球的质量为m,小球在A点的动能为EkA,由机械能守恒定律得EkA=mgeq\f(R,4) ①设小球在B点的动能为EkB,同理有EkB=mgeq\f(5R,4) ②由①②式得eq\f(EkB,EkA)=5. ③(2)若小球能沿轨道运动到C点,则小球在C点所受轨道的正压力N应满足N≥0 ④设小球在C点的速度大小为vC,由牛顿第二定律和向心加速度公式有N+mg=meq\f(v\o\al(2,C),\f(R,2)) ⑤由④⑤式得,vC应满足mg≤meq\f(2v\o\al(2,C),R) ⑥由机械能守恒定律得mgeq\f(R,4)=eq\f(1,2)mveq\o\al(2,C) ⑦由⑥⑦式可知,小球恰好可以沿轨道运动到C点.【答案】(1)5(2)能沿轨道运动到C点我还有这些不足:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论