下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE3平面一、选择题1.用符号表示“点A在直线l上,l在平面α外”,正确的是()A.A∈l,l∉α B.A∈l,l⊄αC.A⊂l,l⊄α D.A⊂l,l∉α解析:选B注意点与直线、点与平面之间的关系是元素与集合间的关系,直线与平面之间的关系是集合与集合间的关系.2.下列说法正确的是()A.三点可以确定一个平面B.一条直线和一个点可以确定一个平面C.四边形是平面图形D.两条相交直线可以确定一个平面解析:选DA错误,不共线的三点可以确定一个平面.B错误,一条直线和直线外一个点可以确定一个平面.C错误,四边形不一定是平面图形.D正确,两条相交直线可以确定一个平面.3.空间两两相交的三条直线,可以确定的平面数是()A.1 B.2C.3 D.1或3解析:选D若三条直线两两相交共有三个交点,则确定1个平面;若三条直线两两相交且交于同一点时,可能确定3个平面.4.下列推断中,错误的是()A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合解析:选CA即为直线l上有两点在平面内,则直线在平面内;B即为两平面的公共点在公共直线上;D为不共线的三点确定一个平面,故D也对.5.在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,那么()A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M既不在直线AC上,也不在直线BD上解析:选A点M一定在平面ABC与平面CDA的交线AC上.二、填空题6.线段AB在平面α内,则直线AB与平面α的位置关系是________.解析:因为线段AB在平面α内,所以A∈α,B∈α.由公理1知直线AB⊂平面α.答案:直线AB⊂平面α7.把下列符号叙述所对应的图形的字母编号填在题后横线上.(1)A∉α,a⊂α________.(2)α∩β=a,P∉α且P∉β________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.解析:(1)图C符合A∉α,a⊂α(2)图D符合α∩β=a,P∉α且P∉β(3)图A符合a⊄α,a∩α=A(4)图B符合α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O答案:(1)C(2)D(3)A(4)B8.平面α∩平面β=l,点A,B∈α,点C∈平面β且C∉l,AB∩l=R,设过点A,B,C三点的平面为平面γ,则β∩γ=________.解析:根据题意画出图形,如图所示,因为点C∈β,且点C∈γ,所以C∈β∩γ.因为点R∈AB,所以点R∈γ,又R∈β,所以R∈β∩γ,从而β∩γ=CR.答案:CR三、解答题9.求证:如果两两平行的三条直线都与另一条直线相交,那么这四条直线共面.解:已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c和l共面.证明:如图所示,因为a∥b,由公理2可知直线a与b确定一个平面,设为α.因为l∩a=A,l∩b=B,所以A∈a,B∈b,则A∈α,B∈α.又因为A∈l,B∈l,所以由公理1可知l⊂α.因为b∥c,所以由公理2可知直线b与c确定一个平面β,同理可知l⊂β.因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公理2的推论2知:经过两条相交直线,有且只有一个平面,所以平面α与平面β重合,所以直线a,b,c和l共面.10.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:如图.(1)连接B1D1.∵EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴(2)正方体AC1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.∵Q∈A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届湖南省常德市武陵区芷兰实验学校历史班高三第二次联考语文试卷含解析
- 《证券投资与分析》课件
- 10.1《劝学》课件 2024-2025学年统编版高中语文必修上册-4
- 现代学徒制课题:中国特色学徒制发展动力机制研究(附:研究思路模板、可修改技术路线图)
- 专题06 阅读理解(单选)说明文20篇(解析版)-2024-2025学年七年级英语上学期期末名校真题进阶练(深圳专用)
- 2025届宜春市重点中学高三冲刺模拟语文试卷含解析
- 黑龙江省鸡西虎林市东方红林业局2025届高考临考冲刺语文试卷含解析
- 2025届江西省赣州市崇义中学高三适应性调研考试数学试题含解析
- 2025届陕西省渭南韩城市高三压轴卷数学试卷含解析
- 2025届福建省长乐中学高考数学全真模拟密押卷含解析
- 治疗用碘131I化钠胶囊-临床用药解读
- 2024人教版五年级上册数学期末口算题训练
- 2024外研版初中英语单词表汇总(七-九年级)中考复习必背
- 安徽省合肥市包河区2023-2024学年三年级上学期期末英语试卷
- 劳动争议调解仲裁法
- 城镇历史与遗产保护智慧树知到期末考试答案2024年
- 【培训课件】医疗机构从业人员行为规范
- 车间生产中的质量问题与质量改进
- 危岩治理施工方案
- 同等学力申硕-同等学力(社会学)笔试(2018-2023年)真题摘选含答案
- 疾病健康宣教的课件
评论
0/150
提交评论