【高三理科数学第一轮复习】第九章-第9节-第2课时-定点、定值、探索性问题_第1页
【高三理科数学第一轮复习】第九章-第9节-第2课时-定点、定值、探索性问题_第2页
【高三理科数学第一轮复习】第九章-第9节-第2课时-定点、定值、探索性问题_第3页
【高三理科数学第一轮复习】第九章-第9节-第2课时-定点、定值、探索性问题_第4页
【高三理科数学第一轮复习】第九章-第9节-第2课时-定点、定值、探索性问题_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时定点、定值、探索性问题考点一定点问题(1)求动点C的轨迹方程;(2)(一题多解)设直线l与(1)中轨迹相切于点P,与直线x=4相交于点Q,判断以PQ为直径的圆是否过x轴上一定点.(2)法一易知直线l的斜率存在,设直线l:y=kx+m.依题意得Δ=(8km)2-4(3+4k2)(4m2-12)=0,即3+4k2=m2.又Q(4,4k+m),综上可知,以PQ为直径的圆过x轴上一定点(1,0).得(x0-t)·(4-t)+3-3x0=0,即x0(1-t)+t2-4t+3=0.由x0的任意性,得1-t=0且t2-4t+3=0,解得t=1.综上可知,以PQ为直径的圆过x轴上一定点(1,0).规律方法

圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【训练1】

已知抛物线C的顶点在原点,焦点在坐标轴上,点A(1,2)为抛物线C上一点. (1)求抛物线C的方程; (2)若点B(1,-2)在抛物线C上,过点B作抛物线C的两条弦BP与BQ,如kBP·kBQ=-2,求证:直线PQ过定点.(1)解若抛物线的焦点在x轴上,设抛物线方程为y2=ax,代入点A(1,2),可得a=4,所以抛物线方程为y2=4x.(2)证明因为点B(1,-2)在抛物线C上,所以由(1)可得抛物线C的方程是y2=4x.易知直线BP,BQ的斜率均存在,设直线BP的方程为y+2=k(x-1),将直线BP的方程代入y2=4x,消去y,得k2x2-(2k2+4k+4)x+(k+2)2=0.在上述方程中,令x=3,解得y=2,所以直线PQ恒过定点(3,2).考点二定值问题(1)证明∵k1,k2均存在,∴x1x2≠0.(2)解①当直线PQ的斜率不存在,即x1=x2,y1=-y2时,②当直线PQ的斜率存在时,设直线PQ的方程为y=kx+b.其中Δ=(8kb)2-4(4k2+1)(4b2-4)=16(1+4k2-b2)>0,即b2<1+4k2.综合①②,△POQ的面积S为定值1.规律方法

圆锥曲线中定值问题的特点及两大解法(1)特点:待证几何量不受动点或动线的影响而有固定的值.(2)两大解法:①从特殊入手,求出定值,再证明这个值与变量无关;②引起变量法:其解题流程为【训练2】

(2019·长春质量监测)已知直线l过抛物线C:x2=2py(p>0)的焦点,且垂直于抛物线的对称轴,l与抛物线两交点间的距离为2. (1)求抛物线C的方程; (2)若点P(2,2),过点(-2,4)的直线m与抛物线C相交于A,B两点,设直线PA与PB的斜率分别为k1和k2.求证:k1k2为定值,并求出此定值.(1)解由题意可知,2p=2,解得p=1,则抛物线的方程为x2=2y.(2)证明由题易知直线m的斜率存在,设直线m的方程为y-4=k(x+2),A(x1,y1),B(x2,y2),联立抛物线x2=2y与直线y-4=k(x+2)的方程消去y得x2-2kx-4k-8=0,其中Δ=4(k2+4k+8)>0恒成立,可得x1+x2=2k,x1x2=-4k-8,则k1k2=-1.因此k1k2为定值,且该定值为-1.考点三探索性问题(2)当直线l垂直于x轴时,显然x轴上任意一点T都满足TS与TR所在直线关于x轴对称.当直线l不垂直于x轴时,假设存在T(t,0)满足条件,设l的方程为y=k(x-1),R(x1,y1),S(x2,y2).其中Δ>0恒成立,由TS与TR所在直线关于x轴对称,得kTS+kTR=0(显然TS,TR的斜率存在),因为R,S两点在直线y=k(x-1)上,所以y1=k(x1-1),y2=k(x2-1),代入②得即2x1x2-(t+1)(x1+x2)+2t=0,③将①代入③得则t=4,综上所述,存在T(4,0),使得当l变化时,总有TS与TR所在直线关于x轴对称.规律方法

此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.当m=0时,显然不合题意.当m≠0时,∵直线l与圆x2+y2=1相切,[思维升华]1.求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关. (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定点的探索与证明问题 (1)探索直线过定点时,可设出直线方程为y=kx+b,然后利用条件建立b,k等量关系进行消元,借助于直线系的思想找出定点. (2)从特殊情况入手,先探求定点,再证明与变量无关.3.求解范围问题的方法

求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.4.圆锥曲线中常见最值的解题方法 (1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决; (2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论