版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.A.1 B.2 C.3 D.42.如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().A. B.C. D.3.已知点P(x,y)在第二象限,|x|=6,|y|=8,则点P关于原点的对称点的坐标为()A.(6,8) B.(﹣6,8) C.(﹣6,﹣8) D.(6,﹣8)4.一元二次方程x2﹣2x﹣1=0的根是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1+,x2=1﹣ D.x1=1+,x2=1﹣5.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.﹣3 B.﹣1 C.2 D.36.已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>07.小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是()x(分)…13.514.716.0…y(米)…156.25159.85158.33…A.32分 B.30分 C.15分 D.13分8.若均为锐角,且,则().A. B.C. D.9.在△ABC中,D是AB中点,E是AC中点,若△ADE的面积是3,则△ABC的面积是()A.3 B.6 C.9 D.1210.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(
)A. B. C. D.11.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:1.A.1个 B.2个 C.3个 D.4个12.在下列图形中,是中心对称图形的是()A. B.C. D.二、填空题(每题4分,共24分)13.在中,,如图①,点从的顶点出发,沿的路线以每秒1个单位长度的速度匀速运动到点,在运动过程中,线段的长度随时间变化的关系图象如图②所示,则的长为__________.14.如图,以点为圆心,半径为的圆与的图像交于点,若,则的值为_______.15.一元二次方程的解是_________.16.若二次函数的图象经过点(3,6),则17.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是_____.18.如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AB=4,BC=6,点M是BC的中点.(1)在AM上求作一点E,使△ADE∽△MAB(尺规作图,不写作法);(2)在(1)的条件下,求AE的长.20.(8分)如图,是的角平分线,过点分别作、的平行线,交于点,交于点.(1)求证:四边形是菱形.(2)若,.求四边形的面积.21.(8分)如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)22.(10分)我县从2017年底开始落实国家的脱贫攻坚任务,准备加大基础设施的投入力度,某乡镇从2017年底的100万到2019年底的196万元,用于基础建设以落实国家大政方针.设平均每年所投入的增长率相同.(1)求2017年底至2019年底该乡镇的年平均基础设施投入增长率?(2)按照这一投入力度,预计2020年该乡镇将投入多少万元?23.(10分)如图,在中,,,,求和的长.24.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?25.(12分)如图,直线和反比例函数的图象都经过点,点在反比例函数的图象上,连接.(1)求直线和反比例函数的解析式;(2)直线经过点吗?请说明理由;(3)当直线与反比例数图象的交点在两点之间.且将分成的两个三角形面积之比为时,请直接写出的值.26.画出如图几何体的主视图、左视图、俯视图.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据△ABC的面积可将高求出,即⊙O上的点到AB的距离为高长的点都符合题意.【详解】过圆心向弦AB作垂线,再连接半径.设△ABE的高为h,由可求.由圆的对称性可知,有两个点符合要求;又弦心距=.∵3+2=5,故将弦心距AB延长与⊙O相交,交点也符合要求,故符合要求的点有3个.故选C.考点:(1)垂径定理;(2)勾股定理.2、C【分析】根据勾股定理求出AB,并根据正弦公式:sinA=求解即可.【详解】∵∠C=90°,BC=3,AC=4∴∴故选C.【点睛】本题主要是正弦函数与勾股定理的简单应用,正确理解正弦求值公式即可.3、D【分析】根据P在第二象限可以确定x,y的符号,再根据|x|=6,|y|=8就可以得到x,y的值,得出P点的坐标,进而求出点P关于原点的对称点的坐标.【详解】∵|x|=6,|y|=8,∴x=±6,y=±8,∵点P在第二象限,∴x<0,y>0,∴x=﹣6,y=8,即点P的坐标是(﹣6,8),关于原点的对称点的坐标是(6,﹣8),故选:D.【点睛】主要考查了平面直角坐标系中各个象限的点的坐标的符号特点和对称点的规律.解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4、C【分析】利用一元二次方程的公式法求解可得.【详解】解:∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,则x==1±,即x1=1+,x2=1﹣,故选:C.【点睛】本题考查了一元二次方程的解法,根据一元二次方程的特征,灵活选择解法是解题的关键.5、A【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】由根与系数的关系得故选:A.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.6、D【解析】分析:根据抛物线的开口、对称轴及与y轴的交点的位置,可得出a<1、c>1、b>﹣2a,进而即可得出结论.详解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<1,﹣>1,c>1,∴b>﹣2a,∴b+2a>1.故选D.点睛:本题考查了二次函数图象与系数的关系,根据抛物线的对称轴大于1找出b>﹣2a是解题的关键.7、B【分析】利用二次函数的性质,由题意,最值在自变量大于14.7小于16.0之间,由此不难找到答案.【详解】最值在自变量大于14.7小于16.0之间,所以最接近摩天轮转一圈的时间的是30分钟.故选:B.【点睛】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题.8、D【解析】根据三角函数的特殊值解答即可.【详解】解:∵∠B,∠A均为锐角,且sinA=,cosB=,
∴∠A=30°,∠B=60°.
故选D.【点睛】本题考查特殊角的三角函数值.9、D【分析】根据相似三角形的性质与判定即可求出答案.【详解】解:∵D是AB中点,E是AC中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故选:D.【点睛】本题考查了相似三角形的面积问题,掌握相似三角形的性质与判定是解题的关键.10、D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11、A【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【详解】①两边成比例且夹角对应相等的两个三角形相似,故错误;
②对角线相等的平行四边形是矩形,故错误;
③任意四边形的中点四边形是平行四边形,正确;
④两个相似多边形的面积比2:3,则周长比为:,故错误,
正确的有1个,
故选A.【点睛】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质.12、C【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此判断即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点睛】本题考查的是中心对称图形的概念:中心对称图形关键是寻找对称中心,旋转180度后与原图重合.二、填空题(每题4分,共24分)13、【分析】由图象,推得AD=7,DC+BC=6,经过解直角三角形求得BC、DC及BD.再由勾股定理求AB.【详解】过点B作BD⊥AC于点D由图象可知,BM最小时,点M到达D点.则AD=7点M从点D到B路程为13-7=6在△DBC中,∠C=60°∴CD=2,BC=4则BD=2∴AB=故答案为:【点睛】本题是动点问题的函数图象探究题,考查了解直角三角形的相关知识,数形结合时解题关键.14、【分析】过点B作BM⊥x轴,过点A作AN⊥y轴,先证△BOM≌△AON,由此可求出∠BOM的度数,再设B(a,b),根据锐角三角函数的定义即可求出a、b的值,即可求出答案.【详解】解:如图,过点B作BM⊥x轴,过点A作AN⊥y轴,∵点B、A均在反比例函数的图象上,OA=OB,
∴点B和点A关于y=x对称,
∴AN=BM,ON=OM,
∴△BOM≌△AON,
∴∠BOM=∠AON=∵∴∠BOM==30°,
设B(a,b),则OM=a=OB•cos30°=2×=,BM=b=OB×sin30°=2×=1,
∴k=ab=×1=故答案为.【点睛】本题考查的是反比例函数综合题反比例函数图象上点的坐标特征,根据题意作出辅助线构造出直角三角形,根据直角三角函数求得B的坐标是解题的关键.15、x1=0,x2=4【分析】用因式分解法求解即可.【详解】∵,∴x(x-4)=0,∴x1=0,x2=4.故答案为x1=0,x2=4.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.16、.【详解】试题分析:根据点在抛物线上点的坐标满足方程的关系,由二次函数的图象经过点(3,6)得:.17、【解析】试题解析:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0);故答案为(,0).18、-1【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【详解】∵y=−x(x−2)(0≤x≤2),∴配方可得y=−(x−1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,−1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,−1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,−1),A6(12,0);∴m=−1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标,学会从一般到特殊的探究方法,属于中考常考题型.三、解答题(共78分)19、(1)过D作DE⊥AM于E,△ADE即为所求;见解析;(2)AE=.【分析】(1)根据题意作出图形即可;(2)先根据矩形的性质,得到AD∥BC,则∠DAE=∠AMB,又由∠DEA=∠B,根据有两角对应相等的两三角形相似,即可证明出△DAE∽△AMB,根据相似三角形的对应边成比例,即可求出DE的长,根据勾股定理即可得到结论.【详解】解:(1)过D作DE⊥AM于E,△ADE即为所求;(2)∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=,∴AE===.【点睛】考核知识点:相似三角形判定和性质.根据相似三角形判定和性质求出线段比,利用勾股定理进一步求解是关键.20、(1)详见解析;(2)120.【分析】(1)先利用两组对边分别平行证明四边形是平行四边形,然后利用角平分线和平行线的性质证明一组邻边相等,即可证明四边形是菱形.(2)连接交于点,利用菱形的性质及勾股定理求出OE,OF的长度,则菱形的面积可求.【详解】(1)证明:,四边形是平行四边形是的角平分线又四边形是菱形(2)连接交于点四边形是菱形,,在中,由勾股定理得【点睛】本题主要考查菱形的判定及性质,掌握菱形的性质和勾股定理是解题的关键.21、作图见解析.【解析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.22、(1)年平均增长率为40%;(2)预计2020年该乡镇将投入274.4万元.【分析】(1)设年平均增长率为x,根据题意列出方程,解方程即可得出答案;(2)用2019年的196万元×(1+年增长率)即可得出答案.【详解】(1)设年平均增长率为x,由题意得解得:=40%,(舍)∴年平均增长率为40%;(2)196(1+40%)=274.4(万元)答:2017年底至2019年底该乡镇的年平均基础设施投入增长为40%,预计2020年该乡镇将投入274.4万元.【点睛】本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键.23、,【分析】作CD⊥AB于D.在Rt△BDC求出CD、BD,在Rt△ACD中求出AD、AC即可解决问题.【详解】解:如图,过点作于点,在中,,,,在中,,∴,,∴.【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24、(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.25、(1);(2)直线经过点,理由见解析;(1)的值为或.【分析】(1)依据直线l1:y=-2x+b和反比例数的图象都经过点P(2,1),可得b=5,m=2,进而得出直线l1和反比例函数的表达式;
(2)先根据反比例函数解析式求得点Q的坐标为,依据当时,y=-2×+5=4,可得直线l1经过点Q;
(1)根据OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:PM=1:2;②OMQ的面积:△OMP的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣东学院《专业英语B》2023-2024学年第一学期期末试卷
- 三年级科学上册第四单元4玻璃和陶瓷教案苏教版
- 《组织签字仪式》课件
- 《珍惜校园生活》课件
- 《计算机操作员理论》课件
- 安全与小狗玩耍的课件
- 上半年销售工作总结及下半年工作参考计划范文
- 奶粉培训课件
- 《心理健康教育公开》课件
- 2021年全国统一高考化学试卷(全国乙卷)
- 2025年中联重科公司发展战略和经营计划
- 2024年世界职业院校技能大赛中职组“工程测量组”赛项考试题库(含答案)
- 静脉治疗小组管理
- 服装厂班组长培训
- 浙江省杭州二中2025届物理高三第一学期期末联考试题含解析
- 带货主播年终总结汇报
- 《激光原理及应用》全套课件
- 北京市海淀区2023-2024学年高三上学期期末考试+历史 含答案
- 急诊心律失常的治疗
- 2024中国绿发投资集团限公司招聘300人高频难、易错点练习500题附带答案详解
- 工厂车间安全培训试题附答案(完整版)
评论
0/150
提交评论