版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若角都是锐角,以下结论:①若,则;②若,则;③若,则;④若,则.其中正确的是()A.①② B.①②③ C.①③④ D.①②③④2.已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是假命题的的一个值可以是()A.1 B.2 C.3 D.43.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4 B.或4 C.或6 D.4或64.已知圆锥的母线长为4,底面圆的半径为3,则此圆锥的侧面积是()A.6π B.9π C.12π D.16π5.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A. B. C. D.6.若x1,x2是一元二次方程5x2+x﹣5=0的两根,则x1+x2的值是()A. B. C.1 D.﹣17.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC的度数为()A.60° B.45° C.75° D.90°8.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.C.9D.9.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠B=65°,则∠ADE=()A.20° B.25° C.30° D.35°10.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A. B. C. D.11.若方程x2+3x+c=0没有实数根,则c的取值范围是()A.c< B.c< C.c> D.c>12.如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在四边形中,,,,.若,则______.14.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.15.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的概率约为30%,估计袋中白球有个.16.如图,把直角三角形的斜边放在定直线上,按顺时针方向在上转动两次,使它转到的位置.设,,则顶点运动到点的位置时,点经过的路线长为_________.17.已知⊙半径为,点在⊙上,,则线段的最大值为_____.18.在中,,,则______________.三、解答题(共78分)19.(8分)黄山景区销售一种旅游纪念品,已知每件进价为元,当销售单价定为元时,每天可以销售件.市场调查反映:销售单价每提高元,日销量将会减少件.物价部门规定:销售单价不低于元,但不能超过元,设该纪念品的销售单价为(元),日销量为(件).(1)直接写出与的函数关系式.(2)求日销售利润(元)与销售单价(元)的函数关系式.并求当为何值时,日销售利润最大,最大利润是多少?20.(8分)如图,点在轴正半轴上,点是反比例函数图象上的一点,且.过点作轴交反比例函数图象于点.(1)求反比例函数的表达式;(2)求点的坐标.21.(8分)如图,在中,点分别在边、上,与相交于点,且,,.(1)求证:;(2)已知,求.22.(10分)如图,在平行四边形中,点在边上,,连接交于点,则的面积与的面积之比为多少?23.(10分)已知关于的方程;(1)当为何值时,方程有两个不相等的实数根;(2)若为满足(1)的最小正整数,求此时方程的两个根,.24.(10分)某商场秋季计划购进一批进价为每件40元的T恤进行销售.(1)根据销售经验,应季销售时,若每件T恤的售价为60元,可售出400件;若每件T恤的售价每提高1元,销售量相应减少10件.①假设每件T恤的售价提高x元,那么销售每件T恤所获得的利润是____________元,销售量是_____________________件(用含x的代数式表示);②设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每件T恤的售价.(2)根据销售经验,过季处理时,若每件T恤的售价定为30元亏本销售,可售出50件;若每件T恤的售价每降低1元,销售量相应增加5条,①若剩余100件T恤需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每件T恤的售价应是多少元?②若过季需要处理的T恤共m件,且100≤m≤300,过季亏损金额最小是__________________________元(用含m的代数式表示).(注:抛物线顶点是)25.(12分)解方程:2x2+x﹣6=1.26.如图,已知AB为⊙O的直径,点C、D在⊙O上,CD=BD,E、F是线段AC、AB的延长线上的点,并且EF与⊙O相切于点D.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据锐角范围内、、的增减性以及互余两锐角的正余弦函数间的关系可得.【详解】①∵随的增大而增大,正确;②∵随的增大而减小,错误;③∵随的增大而增大,正确;④若,根据互余两锐角的正余弦函数间的关系可得,正确;综上所述,①③④正确故答案为:C.【点睛】本题考查了锐角的正余弦函数,掌握锐角的正余弦函数的增减性以及互余锐角的正余弦函数间的关系是解题的关键.2、A【分析】根据判别式的意义,当m=1时,△<0,从而可判断原命题为是假命题.【详解】,解:△=n2-4,当n=1时,△<0,方程没有实数根,当n=2时,△=0,方程有两个相等的实数根,当n=3时,△>0,方程有两个不相等的实数根,当n=4时,△>0,方程有两个不相等的实数根,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3、D【分析】分两种情形:当时,,设,,可得,解出值即可;当时,过点作,可得,得出,,则,证明,得出方程求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,设,,①当时,可得,,,,.②当时,如图2中,过点作,可得,,,,,,,,,,,,.综上所述,或1.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.4、C【分析】圆锥的侧面积就等于经母线长乘底面周长的一半.依此公式计算即可.【详解】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×4=12π,故选C.考点:圆锥的计算.5、D【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴,故A正确;∵DF//BE,∴△ADF∽△ABF,∴,故B正确;∵DF//BE,∴,∵,∴,故C正确;∵DE//BC,∴△ADE∽△ABC,∴,∵DF//BE,∴,∴,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.6、B【分析】利用计算即可求解.【详解】根据题意得x1+x2=﹣.故选:B.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是熟知一元二次方程两根之和与两根之积与系数之间的关系.7、C【分析】根据三角形的外角的性质计算,得到答案.【详解】∵∠GFA=90°,∠A=45°,∴∠CGD=45°,∴∠BDC=∠CGD+∠C=75°,故选:B.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.8、C【解析】试题分析:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2考点:切线的性质;最值问题.9、A【分析】根据旋转的性质可得AC=CD,∠CED=∠B,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CED=∠B=65°,∴△ACD是等腰直角三角形,∴∠CAD=45°,由三角形的外角性质得:.故选:A.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.10、C【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【详解】如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选C.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.11、D【分析】根据方程没有实数根,则解得即可.【详解】由题意可知:△==9﹣4c<0,∴c>,故选:D.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.12、D【分析】过点作x轴的垂线,垂足为M,通过条件求出,MO的长即可得到的坐标.【详解】解:过点作x轴的垂线,垂足为M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐标为.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二、填空题(每题4分,共24分)13、【分析】首先在△ABC中,根据三角函数值计算出AC的长,然后根据正切定义可算出.【详解】∵,,∴,∵AB=2,∴AC=6,∵AC⊥CD,∴,∴故答案为:.【点睛】本题考查了解直角三角形,熟练掌握正弦,正切的定义是解题的关键.14、8【分析】先根据钢珠的直径求出其半径,再构造直角三角形,求出小圆孔的宽口AB的长度的一半,最后乘以2即为所求.【详解】连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm.∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm.在Rt△AOD中,∵mm,∴AB=2AD=2×4=8mm【点睛】本题是典型的几何联系实际应用题,熟练运用垂径定理是解题的关键.15、1【分析】根据摸到白球的概率公式x10=40%【详解】解:不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x个,根据古典型概率公式知:P(白色小球)=x10=10%解得:x=1.故答案为1.考点:已知概率求数量.16、【分析】根据题意得到直角三角形在直线上转动两次点A分别绕点B旋转120°和绕C″旋转90°,将两条弧长求出来加在一起即可.【详解】解:在Rt△ABC中,∵BC=1,,∴AB=2,∠CBA=60°,∴弧AA′=;弧A′A′′=;∴点A经过的路线的长是;故答案为:.【点睛】本题考查了弧长的计算方法及勾股定理,解题的关键是根据直角三角形的转动过程判断点A是以那一点为圆心转动多大的角度.17、【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根据三角形三边关系可得:,∵,∴,∴BE的最大值为:,∴OC的最大值为:.【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.18、【分析】根据sinA=,可得出的度数,并得出的度数,继而可得的值.【详解】在Rt△ABC中,,∵,∴∴∴=.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.三、解答题(共78分)19、(1);(2),x=12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意得到w=(x-6)(-10x+280)=-10(x-17)2+1210,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,,故与的函数关系式为;(2)根据题意得,当时,随的增大而增大,当时,,答:当为时,日销售利润最大,最大利润元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.20、(1);(2)【分析】(1)设反比例函数的表达式为,将点B的坐标代入即可;(2)过点作于点,根据点B的坐标即可得出,,然后根据,即可求出AD,从而求出AO的长即点C的纵坐标,代入解析式,即可求出点的坐标.【详解】解:(1)设反比例函数的表达式为,∵点在反比例函数图象上,∴.解得.∴反比例函数的表达式为.(2)过点作于点.∵点的坐标为,∴,.在中,,∴.∴.∵轴,∴点的纵坐标为6.将代入,得.∴点的纵坐标为.【点睛】此题考查的是反比例函数与图形的综合题,掌握用待定系数法求反比例函数的解析式和利用锐角三角函数解直角三角形是解决此题的关键.21、(1)见解析;(2)10【分析】(1)根据两组对应边成比例及其夹角相等的两个三角形相似证明即可;(2)可证,根据相似三角形对应线段成比例可求AB.【详解】解:(1),,,,,,,(2),.,【点睛】本题考查了相似三角形的判定和性质,灵活利用已知条件证明三角形相似是解题的关键.22、S△DFE:S△BFA=9:1【解析】先证明△DFE∽△BFA,再求出DE:AB的值,根据两个相似三角形面积之比等于相似比的平方求解即可.【详解】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.【点睛】本题考查了相似三角形的性质以及判定,掌握相似三角形的判定以及两个相似三角形面积之比等于相似比的平方是解题的关键.23、(1)且;(2),.【分析】(1)由方程有两个不相等的实数根,可得△=b2-4ac>0,继而求得m的取值范围;(2)因为最小正整数为1,所以把m=1代入方程。解方程即可解答.【详解】解:(1)∵原方程有两个不相等的实数根∴,即∴又∵原方程为一元二次方程,∴综上,的取值范围是且;∵最小正整数,∴m=1,把m=1代入方程得:,解得:,.【点睛】本题考查根的判别式、解一元二次方程,解题关键是熟练掌握根的判别式.24、(1)①20+x,400-10x;②y=﹣10x+200x+8000,60元或80元;(2)①20元,②元.【分析】(1)①每件T恤获得的利润=实际售价-进价,销售量=售价为60元时销售量-因价格上涨减少的销售量;
②根据:销售利润=单件利润×销售量可列函数解析式,并求y=8000时x的值;
(2)①根据:亏损金额=总成本-每件T恤的售价×销售量,列出函数关系式,配方后可得最值情况;
②根据与(2)①相同的相等关系列函数关系式配方可得最小值.【详解】解:(1)①每件T恤所获利润20+x元,这种T恤销售量400-10x个;②设应季销售利润为y元,由题意得:y=(20+x)(400-10x)=﹣10x+200x+8000把y=8000代入,得﹣10x+200x+8000=8000,解得x1=0,x2=20,∴应季销售利润为8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(陕) 082-2022 积分球光色综合测试系统校准规范
- 跨界合作助力品牌发展计划
- 社会治理背景下保安工作的创新实践计划
- 社交媒体的职业生涯路径计划
- 年度工作计划的可视化呈现方式
- 社区服务与社会责任教育计划
- 卫浴柜类相关行业投资方案
- TFT-LCD用偏光片相关项目投资计划书
- 雨水收集利用实施方案计划
- 货运保险合同三篇
- 贾平凹《泉》阅读练习及答案(二)
- 盆腔炎中医临床路径住院表单
- 施工现场安全自查自纠表
- 先心病相关性肺动脉高压治疗策略课件
- 2021年内一科临床路径与单病种质量管理年度总结
- 【运营】2020年万达某轻资产项目上线计划模块节点
- 乌兰察布市工业固体废物资源综合利用
- 电气工程预算
- 川教版九年级上册第23课《巴黎公社》
- “青年安全生产示范岗”创建活动方案
- 最新 场地平整施工方案
评论
0/150
提交评论