版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列事件中,是必然事件的是()A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是180°2.反比例函数的图象经过点,,当时,的取值范围是()A. B. C. D.3.下列成语描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.水涨船高4.如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为()A.4 B.8 C.4 D.45.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1 B.1:2 C.4:1 D.1:46.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A.16 B.20 C.24 D.287.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=8.若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A. B. C. D.9.正六边形的周长为12,则它的面积为()A. B. C. D.10.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m= C.m= D.m=10二、填空题(每小题3分,共24分)11.已知抛物线与轴的一个交点坐标为,则一元二次方程的根为______________.12.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“”的概率是________.13.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是_______m.14.一个扇形的弧长是,面积是,则这个扇形的圆心角是___度.15.如图,在中,,,延长至点,使,则________.16.在平面直角坐标系中,点A(0,1)关于原点对称的点的坐标是_______.17.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.18.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)三、解答题(共66分)19.(10分)如图,是我市某大楼的高,在地面上点处测得楼顶的仰角为,沿方向前进米到达点,测得.现打算从大楼顶端点悬挂一幅庆祝建国周年的大型标语,若标语底端距地面,请你计算标语的长度应为多少?20.(6分)(1)计算:(2)若关于的方程有两个相等的实数根,求的值.21.(6分)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.22.(8分)在中,,点是的中点,连接.(1)如图1,若,求的长度;(2)如图2,过点作于点.求证:.(3)如图2,在(2)的条件下,当时,求的值.23.(8分)若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为、十位上的数字为,三位数是“差数”,我们就记:,其中,,.例如三位数1.∵,∴1是“差数”,∴.(1)已知一个三位数的百位上的数字是6,若是“差数”,,求的值;(2)求出小于300的所有“差数”的和,若这个和为,请判断是不是“差数”,若是,请求出;若不是,请说明理由.24.(8分)某学校自主开发了A书法、B阅读,C绘画,D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)若学生小玲计划选修两门课程,请写出她所有可能的选法;(2)若学生小强和小明各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?25.(10分)在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即CD的长,小英测量的步骤及测量的数据如下:(1)在地面上选定点A,B,使点A,B,D在同一条直线上,测量出、两点间的距离为9米;(2)在教室窗户边框上的点C点处,分别测得点,的俯角∠ECA=35°,∠ECB=45°.请你根据以上数据计算出的长.(可能用到的参考数据:sin35°≈0.57cos35°≈0.82tan35°≈0.70)26.(10分)如图,,D、E分别是半径OA和OB的中点,求证:CD=CE.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.2、B【解析】由图像经过A(2,3)可求出k的值,根据反比例函数的性质可得时,的取值范围.【详解】∵比例函数的图象经过点,∴-3=,解得:k=-6,反比例函数的解析式为:y=-,∵k=-6<0,∴当时,y随x的增大而增大,∵x=1时,y=-6,x=3时,y=-2,∴y的取值范围是:-6<y<-2,故选B.【点睛】本题考查反比例函数的性质,k>0时,图像在一、三象限,在各象限y随x的增大而减小;k<0时,图像在二、四象限,在各象限y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.3、A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】由菱形的性质可得AB=AD=8,且∠A=60°,可证△ABD是等边三角形,根据等边三角形中三线合一,求得BE⊥AD,再利用勾股定理求得EB的长,根据PE=EB,即可求解.【详解】解:如上图,连接BD∵四边形ABCD是菱形,
∴AB=AD=8,且∠A=60°,
∴△ABD是等边三角形,∵点E是DA的中点,AD=8
∴BE⊥AD,且∠A=60°,AE=
∴在Rt△ABE中,利用勾股定理得:∵PE=EB∴PE=EB=4,
故选:D.【点睛】本题考查了菱形的性质,等边三角形判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.5、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.6、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】根据题意知=20%,解得a=20,经检验:a=20是原分式方程的解,故选B.【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据红球的频率得到相应的等量关系.7、B【解析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式8、D【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】∵△ABC∽△DEF,△ABC与△DEF的面积比是,∴△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选D.【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.9、D【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为12,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,
∴∠BOC=×360°=60°,
∵OB=OC,∴△OBC是等边三角形,
∵正六边形ABCDEF的周长为12,
∴BC=12÷6=2,
∴OB=BC=2,∴BM=BC=1,
∴OM==,
∴S△OBC=×BC×OM=×2×=,
∴该六边形的面积为:×6=6.
故选:D.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.10、B【解析】试题分析:∵AB∥CD,∴△OCD∽△OEB,又∵E是AB的中点,∴2EB=AB=CD,∴,即,解得m=.故选B.考点:1.相似三角形的判定与性质;2.平行四边形的性质.二、填空题(每小题3分,共24分)11、,【分析】将x=2,y=1代入抛物线的解析式可得到c=−8a,然后将c=−8a代入方程,最后利用因式分解法求解即可.【详解】解:将x=2,y=1代入得:2a+2a+c=1.解得:c=−8a.将c=−8a代入方程得:∴.∴a(x−2)(x+2)=1.∴x1=2,x2=-2.【点睛】本题主要考查的是抛物线与x轴的交点,求得a与c的关系是解题的关键.12、【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【详解】∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,
∴随机抽取一张点数为6的扑克,其概率是
故答案为【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、1【分析】先判断出DE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解.【详解】∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×50=1米.故答案为1.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.14、150【分析】根据弧长公式计算.【详解】根据扇形的面积公式可得:,解得r=24cm,再根据弧长公式,解得.故答案为:150.【点睛】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式,弧长公式.15、【分析】过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,目的得到直角三角形利用三角函数得△AFC三边的关系,再证明△ACF∽△DCE,利用相似三角形性质得出△DCE各边比值,从而得解.【详解】解:过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,∵,∴∠B=∠ACF,sin∠ACF==,设AF=4k,则AC=5k,CD=,由勾股定理得:FC=3k,∵∠ACF=∠DCE,∠AFC=∠DEC=90°,∴△ACF∽△DCE,∴AC:CD=CF:CE=AF:DE,即5k:=3k:CE=4k:DE,解得:CE=,DE=2k,即AE=AC+CE=5k+=,∴在Rt△AED中,DE:AE=2k:=.故答案为:.【点睛】本题考查三角函数定义、相似三角形的判定与性质,解题关键是构造直角三角形.16、(0,-1)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数即可解得.【详解】∵关于原点对称的点,横坐标与纵坐标都互为相反数∴点A关于原点对称的点的坐标是(0,-1)故填:(0,-1).【点睛】本题考查了关于原点对称的点的坐标特点,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.17、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【详解】列表得:
-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【点睛】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.三、解答题(共66分)19、标语的长度应为米.【解析】首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,即△ABC和△ADC.根据已知角的正切函数,可求得BC与AC、CD与AC之间的关系式,利用公共边列方程求AC后,AE即可解答.【详解】解:在Rt△ABC中,∠ACB=90°,∠ABC=45°,∴Rt△ABC是等腰直角三角形,AC=BC.在Rt△ADC中,∠ACD=90°,tan∠ADC==,∴DC=AC,∵BC-DC=BD,即AC-AC=18,∴AC=45,则AE=AC-EC=45-15=1.答:标语AE的长度应为1米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.20、(1)6;(2).【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b2-4ac=0,列方程求解.【详解】解:(1);(2)∵有两个相等的实数根,∴b2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.21、(1)AF=AE;(2)AF=AE,证明详见解析;(3)结论不变,AF=AE,理由详见解析.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.【详解】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.【点睛】本题考查四边形综合题,综合性较强.22、(1);(2)见解析;(3).【分析】(1)由等腰直角三角形的性质可得CO=BO=AO,∠AOB=90°,由勾股定理可求解;(2)由等腰直角三角形的性质可得AD=CD,由三角形中位线可得OD=AB;(3)分别计算出OC,BC的长,即可求解.【详解】(1),点是的中点,,,;(2),是等腰直角三角形,∵,,∵,;(3),,,,.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理,三角形中位线定理,灵活运用性质进行推理是本题的关键.23、(1);(2)小于300的“差数”有101,110,202,211,220,n是“差数”,【分析】(1)设三位数的十位上的数字是x,根据进行求解;(2)根据“差数”的定义列出小于300的所有“差数”,进而求解.【详解】解:(1)设三位数的十位上的数字是x,∴,解得,,∴个位上的数字为:,∴;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东科技学院《工程施工仿真》2023-2024学年第一学期期末试卷
- 广东金融学院《美术文化活动策划》2023-2024学年第一学期期末试卷
- 广东建设职业技术学院《室内设计基础》2023-2024学年第一学期期末试卷
- 广东环境保护工程职业学院《英语史》2023-2024学年第一学期期末试卷
- 旅客列车安全课件
- 广东财经大学《ISO14000环境管理体系》2023-2024学年第一学期期末试卷
- 小学生日常行为规范课件
- 赣南科技学院《机械制造基础A》2023-2024学年第一学期期末试卷
- 服务合同培训课件
- 甘孜职业学院《文学创作与实践》2023-2024学年第一学期期末试卷
- 商场反恐防暴应急预案演练方案
- 成华区九年级上学期语文期末试卷
- 智慧物业管理的区块链技术应用
- 2024年中考英语语法感叹句100题精练
- 《海洋与人类》导学案
- 公安管理学试题(含答案)
- 挑战杯红色赛道计划书
- 重整投资保密承诺函(范本)
- 先天性甲状腺功能减低症专家讲座
- 淮安市洪泽区2022-2023学年七年级上学期期末生物试题【带答案】
- 2024年民航安全知识培训考试题库及答案(核心题)
评论
0/150
提交评论