下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省绵阳市中太中学2022年高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图是一个几何体的三视图(尺寸的长度单位为),则它的体积是(
). A. B. C. D.参考答案:A由三视图知几何体是一个三棱柱,.故选.2.已知在△中,点在边上,且,,则的值为(
)A
0
B
C
D
-3参考答案:A3.函数的零点个数为(
)A.0
B.1 C.2 D.3参考答案:B4.在△ABC中,若,,,则△ABC的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA、SB、SC两两互相垂直,,,,则四面体S-ABC的外接球半径R=(
)A. B. C. D.参考答案:A【分析】四面体中,三条棱、、两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求.【详解】四面体中,三条棱、、两两互相垂直,则可以把该四面体补成长方体,,,是一个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径.故选A.【点睛】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.5.已知|x|≤2,|y|≤2,点P的坐标为(x,y),则当x,y∈Z时,P满足(x﹣2)2+(y﹣2)2≤4的概率为()A. B. C. D.参考答案:C【考点】几何概型.【分析】本题考查的知识点是古典概型,我们列出满足|x|≤2,|y|≤2(x,y∈Z)的基本事件总数,对应的平面区域,再列出满足条件(x﹣2)2+(y﹣2)2≤4(x,y∈Z)的基本事件总数,然后代入古典概型计算公式,即可得到结论.【解答】解:满足条件|x|≤2,|y|≤2(x,y∈Z)的基本事件有:(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2)(0,﹣2),(0,﹣1),(0,0),(0,1),(0,2)(1,﹣2),(1,﹣1),(1,0),(1,1),(1,2)(2,﹣2),(2,﹣1),(2,0),(2,1),(2,2),共25种情况其中,满足条件(x﹣2)2+(y﹣2)2≤4的有(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),共6种情况故满足(x﹣2)2+(y﹣2)2≤4的概率P=,故选:C6.设,满足约束条件的是最大值为,则的最小值为()A.
B.
C.
D.参考答案:A略7.已知定点B,且|AB|=4,动点P满足|PA|﹣|PB|=3,则|PA|的最小值是()A. B. C. D.5参考答案:C【考点】双曲线的简单性质.【专题】计算题.【分析】由|AB|=4,|PA|﹣|PB|=3可知动点在双曲线右支上,所以|PA|的最小值为右顶点到A的距离.【解答】解:因为|AB|=4,|PA|﹣|PB|=3,故满足条件的点在双曲线右支上,则|PA|的最小值为右顶点到A的距离2+=.故选C.【点评】本题考查双曲线的基本性质,解题时要注意公式的灵活运用.8.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min)(
)A.
B.-
C.
D.参考答案:B9.复数为纯虚数,则实数的值为(
)A.
B.0
C.1
D.参考答案:A略10.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①② B.①③ C.①④ D.②④参考答案:D【考点】简单空间图形的三视图.【专题】阅读型.【分析】利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.【解答】解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选D【点评】本题是基础题,考查几何体的三视图的识别能力,作图能力,三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.二、填空题:本大题共7小题,每小题4分,共28分11.若函数在上是单调函数,则的取值范围是____________。参考答案:略12.椭圆的短轴长为
;参考答案:413.命题:“若,则”的逆否命题是
参考答案:14.在正方体ABCD-A1B1C1D1中,直线AD1与平面ABCD所成角的度数为
。参考答案:15.如图所示是一个算法的伪代码,执行此算法时,输出的结果为
▲
.参考答案:略16.若过点的直线与曲线有公共点,则直线的斜率的取值范围为________.参考答案:17.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。当水面升高1米后,水面宽度是________米.参考答案:
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在等比数列中,,。(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前n项和。参考答案:解:(Ⅰ)
设等比数列的公比为q。依题意,得
………………
2分解得,
…………
4分∴数列的通项公式:。
……
7分(Ⅱ)
由(Ⅰ)得,。
。………
10分∴
。
…………
14分
19.设,其中.(1)证明:,其中;(2)当时,化简:;(3)当时,记,,试比较与的大小.参考答案:(1)见解析;(2)见解析;(3)见解析【分析】(1)直接将排列数用阶乘表示,化简整理即可.(2)求出q=1时的,证明,代入原式即可求得答案;(3)当q=n时,,可得,则,令x=1,得.方法一、利用数学归纳法证明An与Bn的大小;方法二、设,利用导数研究单调性,由单调性即可比较An与Bn的大小.【详解】(1),其中.(2)当时,由(1)结论可得所以原式.(3)【解法一】当时,,所以,所以,令,得,当时,;当时,,即.下面先用数学归纳法证明:当时,,(☆)①当时,,(☆)式成立;②假设时,(☆)式成立,即,则时,(☆)式右边所以,当,(☆)式也成立.综合①②知,当时,.所以,当时,;当时,.【解法二】当时,,所以,所以,令,得,要比较与的大小,即可比较与的大小,设,则,由,得,所以在上递增,由,得,所以在上递减,所以当时,,,当时,,即,即,即,综上所述,当时,;当时,.【点睛】本题考查二项式定理的应用及排列数与阶乘的运算,考查利用导数求最值,训练了利用数学归纳法证明不等式,体现了数学转化思想方法,属于难题.20.已知函数f(x)=(λx+1)lnx﹣x+1.(Ⅰ)若λ=0,求f(x)的最大值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求得函数的定义域为(0,+∞),当λ=0,f(x)=lnx﹣x+1,求导,令f′(x)=0,根据函数的单调性可知,当x=1时,f(x)取最大值;(Ⅱ)求导,f′(1)=1,即λ=1,由(Ⅰ)可知,lnx﹣x﹣1<0,分类当0<x<1时,f(x)=(x+1)lnx﹣x﹣1=xlnx+(lnx﹣x+1)<0,当x>1时,f(x)=lnx+(xlnx﹣x+1)=lnx﹣x(ln﹣+1)>0,可知.【解答】解:(Ⅰ)由f(x)的定义域为(0,+∞),当λ=0,f(x)=lnx﹣x+1,求导,f′(x)=﹣1,令f′(x)=0,解得:x=1,∴当0<x<1时,f′(x)>0,∴f(x)在(0,1)上是增函数;当x>1,f′(x)<0,∴f(x)在(1,+∞)上是减函数;故f(x)在x=1处取最大值,f(1)=0,(Ⅱ)证明:求导,f′(x)=λlnx+﹣1,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,曲线y=f(x)在点(1,f(1))处的切线斜率k=f′(1)=1,即λ=1,∴f(x)=(x+1)lnx﹣x+1,由(Ⅰ)可知,lnx﹣x﹣1<0(x≠1),当0<x<1时,f(x)=(x+1)lnx﹣x﹣1=xlnx+(lnx﹣x+1)<0,∴>0,当x>1时,f(x)=lnx+(xlnx﹣x+1)=lnx﹣x(ln﹣+1)>0,∴>0,综上可知:>0.21.已知{}为等差数列,且(1)求{}的通项公式;(2)若等比数列{}满足,,求{}的前n项和公式。参考答案:(1)方法一:
………….2分解得
……………4分所以
……..6分法二:
(2)
…………….7分22.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率kTF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.【解答】解:(Ⅰ)由题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流管理中的客户服务优化
- 现代医疗办公环境的电气化改造
- 国庆节包厢套餐活动方案
- 2024年五年级品社下册《祖国不会忘记他们》说课稿 山东版
- 2023二年级数学上册 6 表内乘法(二)综合与实践 量一量比一比说课稿 新人教版
- 1 北京的春节 说课稿-2023-2024学年语文六年级下册统编版
- 9《生活离不开他们》 感谢他们的劳动 说课稿-2023-2024学年道德与法治四年级下册统编版
- Unit 2 Weather Lesson 1(说课稿设计)-2023-2024学年人教新起点版英语二年级下册001
- 2024年高中英语 Unit 3 Welcome to the unit and reading I说课稿 牛津译林版选择性必修第二册
- 2024-2025学年高中历史 第五单元 经济全球化的趋势 第26课 经济全球化的趋势(1)教学说课稿 岳麓版必修2
- 二零二五年度大型自动化设备买卖合同模板2篇
- 江西省部分学校2024-2025学年高三上学期1月期末英语试题(含解析无听力音频有听力原文)
- GA/T 2145-2024法庭科学涉火案件物证检验实验室建设技术规范
- 电厂检修管理
- 2024年中考语文试题分类汇编:非连续性文本阅读(学生版)
- 2024年度窑炉施工协议详例细则版B版
- 2024年北京市平谷区中考英语二模试卷
- 第一届山东省职业能力大赛济南市选拔赛制造团队挑战赛项目技术工作文件(含样题)
- 尿毒症替代治疗
- 2022年公务员多省联考《申论》真题(黑龙江省市卷)及答案解析
- 【课件】2025届高考英语一轮复习小作文讲解课件
评论
0/150
提交评论