版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是()A. B.C. D.2.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或13.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A. B. C. D.4.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.5.如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则EC:AE的值为()A. B. C. D.6.函数y=(k<0),当x<0时,该函数图像在A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A.内部 B.外部 C.圆上 D.不能确定8.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.9.如图,PA与PB分别与圆O相切与A、B两点,∠P=80o,则∠C=()A.45 B.50 C.55 D.6010.如图,在中,,,为边上的一点,且.若的面积为,则的面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.圆锥的侧面展开图是一个_____形,设圆锥的母线长为3,底面圆的半径为2,则这个圆锥的全面积为_____.12.若记表示任意实数的整数部分,例如:,,…,则(其中“+”“-”依次相间)的值为______.13.如图,圆锥的母线长OA=6,底面圆的半径为,一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短路程为___________(结果保留根号)14.如图,过轴上的一点作轴的平行线,与反比例函数的图象交于点,与反比例函数,的图象交于点,若的面积为3,则的值为__________.15.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.16.关于的一元二次方程的二根为,且,则_____________.17.如图,是的中线,点在延长线上,交的延长线于点,若,则___________.18.一元二次方程x2=3x的解是:________.三、解答题(共66分)19.(10分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.(1)求证:∠BAC=∠AED;(2)在边AC取一点F,如果∠AFE=∠D,求证:.20.(6分)已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.(1)求证:△ABE∽△DEA;(2)若AB=4,求AE•DE的值.21.(6分)如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止)(1)这个游戏规则对双方公平吗?说说你的理由;(2)请你设计一个对双方都公平的游戏规则.22.(8分)如图,在中,,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);②若,则________.(用含的式子表示)23.(8分)如图,正方形ABCD中,AB=,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)若A,E,O三点共线,求CF的长;(2)求△CDF的面积的最小值.24.(8分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=时,求的长(结果保留);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.25.(10分)消费者在某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸.现将张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖,她从中随机翻开一张纸牌,小杨获奖的概率是________.(2)如粜小杨、小月都有翻两张牌的机会,小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过画树状图或列表法分析说明理由.26.(10分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】观察二次函数图象,找出>0,>0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【详解】观察二次函数图象,发现:
抛物线的顶点坐标在第四象限,即,
∴,.
∵反比例函数中,
∴反比例函数图象在第一、三象限;
∵一次函数,,
∴一次函数的图象过第一、二、三象限.
故选:B.【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出,.解决该题型题目时,熟记各函数图象的性质是解题的关键.2、D【分析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.3、B【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此依次判断即可.【详解】∵在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,∴A、C、D不符合,不是中心对称图形,B选项为中心对称图形.故选:B.【点睛】本题主要考查了中心对称图形的定义,熟练掌握相关概念是解题关键.4、C【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.5、A【分析】根据平行线截线段成比例定理,即可得到答案.【详解】∵DE∥BC,∴,∵AD=4,DB=2,∴,故选:A.【点睛】本题主要考查平行线截线段成比例定理,,掌握平行线截线段成比例,是解题的关键.6、B【解析】首先根据反比例函数的比例系数确定图象的大体位置,然后根据自变量的取值范围确定具体位置【详解】∵比例系数k<0,∴其图象位于二、四象限,∵x<0∴反比例函数的图象位于第二象限,故选B.【点睛】此题考查反比例函数的性质,根据反比例函数判断象限是解题关键7、B【解析】平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O外;d=r点P在⊙O上;d<r点P在⊙O内.【详解】∵⊙O的半径为3cm,点P到圆心O的距离为4cm,4cm>3cm,∴点P在圆外.故选:B.【点睛】本题考查平面上的点距离圆心的位置关系的问题.8、C【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.9、B【分析】连接AO,BO,根据题意可得∠PAO=∠PBO=90°,根据∠P=80°得出∠AOB=100°,利用圆周角定理即可求出∠C.【详解】解:连接AO,BO,∵PA与PB分别与圆O相切与A、B两点,∴∠PAO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°-90°-90°-80°=100°,∴∠C=,故选:B.【点睛】本题考查了切线的性质以及圆周角定理,解题的关键是熟知切线的性质以及圆周角定理的内容.10、C【分析】根据相似三角形的判定定理得到,再由相似三角形的性质得到答案.【详解】∵,,∴,∴,即,解得,的面积为,∴的面积为:,故选C.【点睛】本题考查相似三角形的判定定理和性质,解题的关键是熟练掌握相似三角形的判定定理和性质.二、填空题(每小题3分,共24分)11、扇10π【分析】圆锥的侧面展开图是一个扇形,利用圆锥的全面积=圆锥的侧面积+底面积即可得答案.【详解】圆锥的侧面展开图是一个扇形,圆锥的侧面积==π×2×3=6π,底面积为=4π,∴全面积为6π+4π=10π.故答案为:扇,10π【点睛】本题考查圆锥的侧面展开图及侧面积的计算,熟记圆锥侧面积公式是解题关键.12、-22【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以=1-2+3-4+…+43-44=-22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.13、6【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离.【详解】∵底面圆的半径为,∴圆锥的底面周长为2×=3,设圆锥的侧面展开图的圆心角为n.∴,解得n=90°,如图,AA′的长就是小虫所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案为:6.【点睛】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离的求法;把立体几何转化为平面几何来求是解决本题的突破点.14、-6.【分析】由AB∥x轴,得到S△AOP=,S△BOP=,根据的面积为3得到,即可求得答案.【详解】∵AB∥x轴,∴S△AOP=,S△BOP=,∵S△AOB=S△AOP+S△BOP=3,∴,∴-m+n=6,∴m-n=-6,故答案为:-6.【点睛】此题考查反比例函数中k的几何意义,由反比例函数图象上的一点作x轴(或y轴)的垂线,再连接此点与原点,所得三角形的面积为,解题中注意k的符号.15、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.16、【分析】先降次,再利用韦达定理计算即可得出答案.【详解】∵的一元二次方程的二根为∴∴又,代入得解得:m=故答案为.【点睛】本题考查的是一元二次方程根与系数的关系,若的一元二次方程的二根为,则,.17、5【分析】过D点作DH∥AE交EF于H点,证△BDH∽△BCE,△FDH∽△FAE,根据对应边成比例即可求解.【详解】过D点作DH∥AE交EF于H点,∴∠BDH=∠BCE,∠BHD=∠BEC,∴△BDH∽△BCE同理可证:△FDH∽△FAE∵AD是△ABC的中线∴BD=DC∴又∴∴∴故答案为:5【点睛】本题考查的是相似三角形,找到两队相似三角形之间的联系是关键.18、x1=0,x2=1【分析】先移项,然后利用因式分解法求解.【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解三、解答题(共66分)19、见解析【解析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)见解析;(2)2【解析】试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B即可证明两三角形都得相似.(2)根据(1)的结论可得出,进而代入可得出AE•DE的值.试题解析:(1)如图,∵四边形ABCD是菱形,∴AD∥BC.∴∠1=∠2.又∵∠B=∠AED,∴△ABE∽△DEA.(2)∵△ABE∽△DEA,∴.∴AE•DE=AB•DA.∵四边形ABCD是菱形,AB=1,∴AB=DA=1.∴AE•DE=AB2=2.考点:1.菱形的性质;2.相似三角形的判定和性质.21、(1)不公平(2)【解析】解:列表或画树状图正确,转盘甲
转盘乙
1
2
3
4
5
1
(1,1)和为2
(2,1)和为3
(3,1)和为4
(4,1)和为5
(5,1)和为6
2
(1,2)和为3
(2,2)和为4
(3,2)和为5
(4,2)和为6
(5,2)和为7
3
(1,3)和为4
(2,3)和为5
(3,3)和为6
(4,3)和为7
(5,3)和为8
4
(1,4)和为5
(2,4)和为6
(3,4)和为7
(4,4)和为8
(5,4)和为9
(1)数字之和一共有20种情况,和为4,5或6的共有11种情况,∵P(小吴胜)=>P(小黄胜)=,∴这个游戏不公平;(2)新的游戏规则:和为奇数小吴胜,和为偶数小黄胜.理由:数字和一共有20种情况,和为偶数、奇数的各10种情况,∴P(小吴胜)=P(小黄胜)=.22、(1)见解析;(2)①见解析,②90°−α【分析】(1)利用网格特点和轴对称的性质画出O点;(2)①利用网格特点和旋转的性质分别画出A、B、C三点对应点点E、F、G即可;②先确定∠OCB=∠DCB=α,再利用OB=OC和三角形内角和得到∠BOC=180°−2α,根据旋转的性质得到∠COG=90°,则∠BOG=270°−2α,于是可计算出∠OGB=α−45°,然后计算∠OGC−∠OGB即可.【详解】(1)如图,点O为所作;(2)①如图,△EFG为所作;②∵点O与点D关于BC对称,∴∠OCB=∠DCB=α,∵OB=OC,∴∠OBC=∠OCB=α,∴∠BOC=180°−2α,∵∠COG=90°,∴∠BOG=180°−2α+90°=270°−2α,∵OB=OG,∴∠OGB=[180°−(270°−2α)]=α−45°,∴∠BGC=∠OGC−∠OGB=45°−(α−45°)=90°−α.故答案为90°−α.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、(1)CF=3;(2).【分析】(1)由正方形的性质可得AB=BC=AD=CD=2,根据勾股定理可求AO=5,即AE=3,由旋转的性质可得DE=DF,∠EDF=90°,根据“SAS”可证△ADE≌△CDF,可得AE=CF=3;(2)由△ADE≌△CDF,可得S△ADE=S△CDF,当OE⊥AD时,S△ADE的值最小,即可求△CDF的面积的最小值.【详解】(1)由旋转得:,,∵是边的中点,∴,在中,,∴,∵四边形是正方形,∴,,∴,即,∴,在和中,∴,∴;(2)由于,所以点可以看作是以为圆心,2为半径的半圆上运动,过点作于点,∵,∴,当,,三点共线,最小,,∴.【点睛】本题考查了旋转的性质,正方形的性质,勾股定理,全等三角形的判定和性质等知识,证明△ADE≌△CDF是本题的关键.24、(1)详见解析;(2);(3)4<OC<1.【分析】(1)连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=,由特殊角的三角函数值可得∠B=30°,∠BOQ=60°,根据直角三角形的性质得OQ=4,结合题意可得∠QOD度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO的外心是OA的中点,结合题意可得OC取值范围.【详解】(1)证明:连接OQ.∵AP、BQ是⊙O的切线,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90∘,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三点共线,∵在Rt△BOQ中,cosB=,∴∠B=30∘,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 航空公司医生聘用合同模板
- 核电站管井施工合同
- 广告策划专员聘用合同
- 4S店门市租赁合同
- 2025食品代加工合同范本
- 2025合伙房屋购房合同书
- 2025低压外网配电合同
- 2025合同样例消费品工作人员培训范本
- 2025汽车分期付款合同范本
- 2025沙县小吃店店铺租赁 店铺转让合同
- 国家电投《新能源电站单位千瓦造价标准值(2024)》
- 小儿全麻患者术后护理
- 黑龙江省哈尔滨市2023-2024学年八年级上学期语文期末模拟考试试卷(含答案)
- 2024至2030年不锈钢水龙头项目投资价值分析报告
- 理论力学(浙江大学)知到智慧树章节答案
- 《血站业务场所建设指南 第3部分:献血屋》
- 愚公移山英文 -中国故事英文版课件
- 国开经济学(本)1-14章练习试题及答案
- 流量变送器设计毕业设计
- 全体教职工对学校行政领导干部工作作风和行政效能调查问卷 (2)
- 齿轮传动的设计(论文)
评论
0/150
提交评论