版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年黑龙江省齐齐哈尔市普通高校对口单招高等数学二自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(30题)1.A.A.仅有一条B.至少有一条C.不一定存在D.不存在
2.
A.0B.1/2C.ln2D.1
3.函数y=f(x)在点x=x0处左右极限都存在并且相等,是它在该点有极限的()A.A.必要条件B.充分条件C.充要条件D.无关条件
4.()。A.-1B.0C.1D.2
5.
6.A.A.
B.
C.
D.
7.()。A.
B.
C.
D.
8.()。A.0
B.1
C.㎡
D.
9.已知f(x)=xe2x,,则f'(x)=()。A.(x+2)e2x
B.(x+2)ex
C.(1+2x)e2x
D.2e2x
10.
11.()。A.3B.2C.1D.2/3
12.设f(x)=xe2(x-1),则在x=1处的切线方程是()。A.3x-y+4=0B.3x+y+4=0C.3x+y-4=0D.3x-y-2=0
13.
14.已知f'(x+1)=xex+1,则f'(x)=A.A.xex
B.(x-1)ex
C.(x+1)ex
D.(x+1)ex+41
15.
A.2x+cosyB.-sinyC.2D.0
16.()。A.
B.
C.
D.
17.
a.一定有定义b.一定无定义c.d.可以有定义,也可以无定义
18.A.A.0B.1C.+∞D.不存在且不是+∞
19.设事件A,B的P(B)=0.5,P(AB)=0.4,则在事件B发生的条件下,事件A发生的条件概率P(A|B)=().A.A.0.1B.0.2C.0.8D.0.9
20.()。A.3eB.e/3C.-e/3D.-3e
21.设y=f(x)存点x处的切线斜率为2x+e-x,则过点(0,1)的曲线方程为A.A.x2-e-x+2
B.x2+e-x+2
C.x2-e-x-2
D.x2+e-x-2
22.()。A.
B.
C.
D.
23.
24.A.低阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.高阶无穷小量
25.()。A.
B.
C.
D.
26.设z=x3ey2,则dz等于【】
A.6x2yey2dxdy
B.x2ey2(3dx+2xydy)
C.3x2ey2dx
D.x3ey2dy
27.
28.设100件产品中有次品4件,从中任取5件的不可能事件是()。A.“5件都是正品”B.“5件都是次品”C.“至少有1件是次品”D.“至少有1件是正品”
29.
30.设函数f(sinx)=sin2x,则fˊ(x)等于()。A.2cosxB.-2sinxcosxC.%D.2x二、填空题(30题)31.
32.33.
34.35.设函数y=xn+2n,则y(n)(1)=________。
36.
37.
38.
39.40.
41.
42.设曲线y=ax2+2x在点(1,a+2)处的切线与y=4x平行,则a=______.
43.
44.
45.46.47.
48.
49.函数y=ex2的极值点为x=______.
50.
51.
52.53.
54.
55.
56.
57.
58.
59.
60.
三、计算题(30题)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S:
②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.
80.
81.
82.
83.设函数y=x3+sinx+3,求y’.84.已知曲线C为y=2x2及直线L为y=4x.
①求由曲线C与直线L所围成的平面图形的面积S;
②求曲线C的平行于直线L的切线方程.
85.
86.
87.
88.
89.
90.
四、综合题(10题)91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
五、解答题(10题)101.
102.
103.计算
104.
105.106.
107.
108.
109.求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S,并求
此平面图形绕y轴旋转一周所得旋转体的体积Vy.
110.
六、单选题(0题)111.
参考答案
1.B
2.B此题暂无解析
3.C根据函数在一点处极限存在的充要性定理可知选C.
4.D
5.-1
6.D
7.A
8.A
9.Cf'(x)=(xe2x)'=e2x+2xe2x=(1+2x)e2x。
10.A
11.D
12.D因为f'(x)=(1+2x)e2(x-1),f'(1)=3,则切线方程的斜率k=3,切线方程为y-1=3(x-1),即3x-y一2=0,故选D。
13.C
14.A用换元法求出f(x)后再求导。
用x-1换式中的x得f(x)=(x-1)ex,
所以f'(x)=ex(x-1)ex=xex。
15.D此题暂无解析
16.B
17.D
18.D
19.C利用条件概率公式计算即可.
20.B
21.A因为f(x)=f(2x+e-x)dx=x2-e-x+C。
过点(0,1)得C=2,
所以f(x)=x-x+2。
本题用赋值法更简捷:
因为曲线过点(0,1),所以将点(0,1)的坐标代入四个选项,只有选项A成立,即02-e0+2=1,故选A。
22.C
23.A
24.C
25.B因为f'(x)=1/x,f"(x)=-1/x2。
26.B
27.A
28.B不可能事件是指在一次试验中不可能发生的事件。由于只有4件次品,一次取出5件都是次品是根本不可能的,所以选B。
29.
30.D本题的解法有两种:解法1:先用换元法求出f(x)的表达式,再求导。设sinx=u,则f(x)=u2,所以fˊ(u)=2u,即fˊ(x)=2x,选D。解法2:将f(sinx)作为f(x),u=sinx的复合函数直接求导,再用换元法写成fˊ(x)的形式。等式两边对x求导得fˊ(sinx)·cosx=2sinxcosx,fˊ(sinx)=2sinx。用x换sinx,得fˊ(x)=2x,所以选D。
31.
32.
33.
34.-1/2ln3
35.
36.应填2.
【解析】利用重要极限1求解.
37.x2lnxx2lnx解析:
38.
39.y3dx+3xy2dy
40.
41.42.1因为y’(1)=2a+2=4,则a=1
43.B
44.
45.2/27
46.
47.
用复合函数求导公式计算.
48.2
49.
50.-1-1解析:
51.
52.53.应填2π.
利用奇、偶函数在对称区间上积分的性质.
54.
55.
56.e
57.
58.π/2
59.00
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.79.①由已知条件画出平面图形如图阴影所示
80.
81.
82.
83.y’=(x3)’+(sinx)’+(3)’=3x2+cosx.84.画出平面图形如图阴影所示
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.101.本题考查的知识点是分段函数的定积分计算方法及用换元法去根号计算定积分.分段函数在不同区间内的函数表达式是不同的,应按不同区间内的表达式计算.
102.
103.
104.
105.
106.
107.108.本题考查的知识点是利用导数求解实际问题的最值.
这类题目的关键是根据题意列出函数关系式并正确求出yˊ和y″(如果需要求y″时).如果yˊ与y″算错,则所有结果无一正确.
109.本题考查的知识点是曲边梯形面积的求法及旋转体体积的求法.
首先应根据题目中所给的曲线方程画出封闭的平面图形,然后根据此图形的特点选择对x积分还是对),积分.选择
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统编人教版六年级语文上册第15课《金色的鱼钩》精美课件
- 个人车辆抵押合同范本
- 二零二四年度计算机软件开发及服务外包合同3篇
- 建筑工地植筋合同
- 铝板产业技术创新联盟协议(2024版)
- 《我的建筑》课件
- 红砖购销合同电子版
- 财务自查报告范文
- 股权转让涉及2024年度夫妻共有财产协议
- 哺乳期辞职报告范文
- 人工草坪铺设合同协议书
- 七年级上册道德与法治《3.1认识自己 》说课稿(2022课标)
- DL∕T 5372-2017 水电水利工程金属结构与机电设备安装安全技术规程
- 2024-2030年中国先进过程控制(APC)行业市场发展趋势与前景展望战略分析报告
- 2024年广西应急厅事业单位笔试真题
- 2024-2030年酒店项目可行性研究报告
- 2024-2030年中国设计和建造责任险行业市场现状供需分析及市场深度研究发展前景及规划战略投资分析研究报告
- 农贸市场卫生管理核心制度
- 考点32 漫画阅读-2024年小升初语文核心知识点突破练习
- 2024年咨询工程师之工程项目组织与管理题库含完整答案(历年真题)
- MOOC 管理咨询-暨南大学 中国大学慕课答案
评论
0/150
提交评论