下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市第二十九中学2022-2023学年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,则中元素个数为
(
)A、60
B、51
C、50
D、49参考答案:B2.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 C. D.8参考答案:D【考点】由三视图求面积、体积.【分析】三视图复原的几何体是长方体的三分之二,依据三视图的数据,得出长方体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是长方体,长方体长、宽、高分别是:2,2,3,所以这个几何体的体积是2×2×3=12,长方体被一个平面所截,得到的几何体的是长方体的三分之二,如图所示,则这个几何体的体积为12×=8.故选D.3.判断下列各组中的两个函数是同一函数的为(
)⑴,;⑵,;⑶,;⑷,;⑸,
A
⑴、⑵
B
⑵、⑶
C
⑷
D
⑶、⑸参考答案:C4.如图所示的程序框图,若输出的S是30,则①可以为()A.n≤2? B.n≤3? C.n≤4? D.n≤5?参考答案:C【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加2n的值到S并输出S.【解答】解:第一次循环:S=0+2=2,n=1+1=2,继续循环;第二次循环:S=2+22=6,n=2+1=3,继续循环;第三次循环:S=6+23=14,n=3+1=4,继续循环;第四次循环:S=14+24=30,n=4+1=5,停止循环,输出S=30.故选C.5.设,记不超过x的最大整数为[x],令{x}=x-,则{},[],(
)A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列
参考答案:B略6.设,,,则有(
)(A)
(B)
(C)
(D)参考答案:C7.函数的零点所在的区间是A.
B.(1,2)
C.
D.(2,4)参考答案:B8.已知△ABC中,,,则角B等于()A.30° B.60°或120° C.120° D.90°参考答案:D【分析】直接运用正弦定理,可以求出角的大小.【详解】由正弦定理可知:,因为角是的内角,所以,因此角等于,故本题选D.【点睛】本题考查了正弦定理的应用,考查了数学运算能力.9.已知向量,.若,则x的值为(
)A.-2
B.
C.
D.2参考答案:D向量,,因为,可得,解得,故选D.
10.下列四个函数中,在上为增函数的是(
)A.
B.
C. D. 参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元。现某人乘坐一次出租车付费22.6元,则此次出租车行驶了__
___km.参考答案:912.已知向量,满足,,且,则与的夹角为________参考答案:60°13.已知扇形AOB(O为圆心)的周长为4,半径为1,则∠AOB=
,扇形AOB的面积是
.参考答案:2,1扇形AOB(O为圆心)的周长为4,半径为1,所以扇形的弧长为,则,扇形AOB的面积是,故答案为.
14.已知,若,则______.参考答案:15.已知直线平面,直线在平面内,给出下列四个命题:①;②;③;④,其中真命题的序号是
.参考答案:
16.若,则________.参考答案:由题意可得:,即:,解方程可得:.17.函数的定义域和值域相等,则实数a=.参考答案:﹣4或0【考点】函数的值域;函数的定义域及其求法.【分析】根据函数的定义域与值域相同,故可以求出参数表示的函数的定义域与值域,由两者相同,故比较二区间的端点得出参数满足的方程解方程求参数即可.【解答】解:若a>0,对于正数b,f(x)的定义域为,但f(x)的值域A?[0,+∞),故D≠A,不合要求.若a<0,对于正数b,f(x)的定义域为.由于此时,故函数的值域.由题意,有,由于b>0,所以a=﹣4.若a=0,则对于每个正数b,的定义域和值域都是[0,+∞)故a=0满足条件.故答案为:﹣4或0.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.若二次函数的图象与x轴交于,且函数的最大值为,求这个二次函数的表达式。参考答案:解析:设是的两根,的图象与x轴交于,,即有
又函数有最在值为9,故函数过(1,9),
19.在△中,角、、所对的边分别为、、,已知.(1)求角C的值;(2)求及△ABC的面积.参考答案:解:(1)由得,即---------5分(2)由余弦定理得--10分20.(10分)在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥平面ABCD,F为BE的中点.(1)求证:DE∥平面ACF;(2)求证:BD⊥AE.参考答案:考点: 直线与平面平行的判定.专题: 空间位置关系与距离.分析: (1)利用正方形的性质以及中线性质任意得到OF∥DE,利用线面平行的判定定理可证;(2)利用底面是正方形得到对角线垂直,以及线面垂直的性质得到线线垂直,得到线面垂直的判定定理可证.解答: 证明:(1)连接OF,.∵.∴是BE的中点,∴…(5分)∴DE∥ACF;(2)证明:∵底面ABCD是正方形,∴BD⊥AC,∵EC⊥平面ABCD,∴EC⊥BD,∴BD⊥平面ACE,∴BD⊥AE.点评: 本题考查了线面平行的判定定理以及线面垂直的判定定理和性质定理的运用;关键是熟练掌握相关定理的条件及结论.21.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。(I)求应从小学、中学、大学中分别抽取的学校数目。(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率。参考答案:(1)3,2,1(2)(1)从小学、中学、大学中分别抽取的学校数目为3、2、1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种.所以P(B)==.22.已知直线l过点(3,1)且与直线x+y﹣1=0平行.(1)求直线l的方程;(2)若将直线l与x轴、y轴所围成的平面图形绕y轴旋转一周得到一个几何体,求这个几何体的体积.参考答案:【考点】旋转体(圆柱、圆锥、圆台);直线的一般式方程与直线的平行关系.【分析】(1)设直线方程为x+y+c=0,代入(3,1),求出c,即可求直线l的方程;(2)将直线l与x轴、y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度货物出口合同标的及出口手续
- 二零二四年度技术服务合同技术咨询服务合同04年专用
- 底薪加提成薪资制度合同(2篇)
- 二零二四年度货物采购合同(含详细技术参数与交付时间表)
- 二零二四年度电商企业软件许可合同
- 内控优化咨询合作协议
- 长期借款协议续借格式
- 建设工程施工合同(示范文本)
- 建筑钢管架劳务分包合同
- 生石灰购销意向协议
- 中国在线监测设备行业市场供需态势及未来趋势研判报告
- 北京教育出版社心理健康六年级教案
- 预应力混凝土管桩(L21G404)
- 2024-2034年中国化机浆行业发展趋势及投资前景预测报告
- 学校浴室承包合同协议书
- 2024年共青团团课考试题库及答案
- 小学数学教学经验交流
- 2024届高考英语作文复习专项:读后续写“自我成长”类范文12篇 讲义素材
- DZ∕T 0153-2014 物化探工程测量规范(正式版)
- 《第8单元 20以内的进位加法:9加几》课件
- 2024年专业技术人员继续教育考试必考100题附参考答案【完整版】
评论
0/150
提交评论