版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市阜南县实验中学2022高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示,程序框图(算法流程图)的输出结果是 ()A. B. C. D.参考答案:B2.设曲线上任一点处的切线的的斜率为,则函数的部分图象可以为(
)参考答案:A
【知识点】函数的图象B8解析:g(x)=2x,g(x)?cosx=2x?cosx,g(﹣x)=﹣g(x),cos(﹣x)=cosx,∴y=g(x)cosx为奇函数,故排除:B、D.令x=0.1,h(x)>0.故排除:C.故选:A【思路点拨】先研究函数y=g(x)cosx的奇偶性,再根据在某点处的函数值的符号进一步进行判定.3.已知函数,给出下列四个说法:
①若,则;
②的最小正周期是;
③在区间上是增函数;
④的图象关于直线对称.
其中正确说法的个数为(
)
A.1
B.2
C.3
D.4参考答案:B函数,若,即,所以,即,所以或,所以①错误;所以周期,所以②错误;当时,,函数递增,所以③正确;当时,为最小值,所以④正确,所以正确的有2个,选B.4.设函数,的零点分别为,则A.
B.
C.
D.参考答案:A.由指数与对数函数的图像知:,于是有,得,故选A5.正项数列满足:________.参考答案:6.定义在R上的函数满足的导函数,已知的图象如图所示,若两个正数满足的取值范围是(
)
A.
B.
C.
D.参考答案:C略7.如下图,矩形ABCD中,点E为边CD上任意一点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于(
)A.
B.
C.
D.参考答案:C略8.在平面直角坐标系xOy中,已知,,则的最小值为(
)
A.9
B.
C.
D.参考答案:B9.已知函数,且,则函数的图象的一条对称轴是(
)A.
B.
C.
D.参考答案:A试题解析:∵函数f(x)=sin(x-φ),∴=kπ+,k∈z,即φ=kπ+,k∈z,故可取φ=,f(x)=sin(x-),令x-=kπ+,求得x=kπ+,k∈z,则函数f(x)的图象的一条对称轴为x=
10.集合,,若,则的值为A.0
B.1
C.2
D.4参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.参考答案:60【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.12.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有
种.参考答案:3413.已知直线平面,直线在平面内,给出下列四个命题:①;②;③;④,其中真命题的序号是
.参考答案:①,④14.小明爸爸开车以80km/h的速度沿着正北方向的公路行驶,小明坐在车里观察,在点A处望见电视塔P在北偏东方向上,15分钟后到点B处望见电视灯塔在北偏东方向上,则汽车在点B时与电视塔P的距离是______________km.参考答案:略15.函数的单调递增区间是_参考答案:略16.在边长为的正方形内任取一点,则点到点的距离小于的概率为
参考答案:略17.若实数满足,则点到直线的距离的取值范围是
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在锐角△ABC中,,________,(1)求角A;(2)求△ABC的周长l的范围.注:在①,且,②,③这三个条件中任选一个,补充在上面问题中并对其进行求解.参考答案:(1)若选①,(2)【分析】(1)若选①,,得到,解得答案.(2)根据正弦定理得到,故,根据角度范围得到答案.【详解】(1)若选①,∵,且,,.(2),故,,锐角△ABC,故.,.(1)若选②,,则,,,,(2)问同上;(1)若选③=+-=×+×-,,(2)问同上;【点睛】本题考查了向量的数量积,正弦定理,三角恒等变换,意在考查学生的计算能力和综合应用能力.19.本小题满分10分)选修4—4;坐标系与参数方程
已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的坐标系方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为(1)求点的直角坐标;(2)设为上任意一点,求的取值范围.参考答案:(1)点的极坐标为
点的直角坐标为
(2)设;则
20.在直角坐标系xOy中,圆C的参数方程,以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是l,射线与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.参考答案:【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(I)利用cos2φ+sin2φ=1,把圆C的参数方程化为(x﹣1)2+y2=1,利用互化公式可得极坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,解得ρ1.设(ρ2,θ2)为点Q的极坐标,由,解得ρ2.由θ1=θ2,可得|PQ|=|ρ1﹣ρ2|.【解答】解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得ρ1=1.设(ρ2,θ2)为点Q的极坐标,由,解得ρ2=3.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.21.设函数f(x)=|x﹣a|+x,其中a>0(1)当a=1时,求不等式f(x)≥x+2的解集;(2)若不等式f(x)≤3x的解集为{x|x≥2},求实数a的值.参考答案:【考点】R5:绝对值不等式的解法.【分析】(1)由条件可得|x﹣1|≥2,即x﹣1≥2,或x﹣1≤﹣2,由此求得x的范围.(2)不等式即|x﹣a|≤2x,求得x≥.再根据不等式f(x)≤3x的解集为{x|x≥2},可得=2,由此求得a的值.【解答】解:(1)当a=1时,不等式f(x)≥x+2,即|x﹣1|+x≥x+2,即|x﹣1|≥2,∴x﹣1≥2,或x﹣1≤﹣2,求得x≥3,或x≤﹣1,故不等式f(x)≥x+2的解集为{x|x≥3,或x≤﹣1}.(2)不等式f(x)≤3x,即|x﹣a|+x≤3x,即|x﹣a|≤2x,可得,求得x≥.再根据不等式f(x)≤3x的解集为{x|x≥2},可得=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版九年级化学第十单元1常见的酸和碱课时2酸的化学性质分层作业课件
- 护理质控组长竞聘
- 销售提成协议合同范本
- 2024版钢筋工程造价咨询合同2篇
- 司机协议书 3篇
- 离职欠工资结算协议书范本
- 《课程TMA系统篇》课件
- K12教育机构培训内容
- 2024年度店铺门面租赁合同解除协议:约定解除合同的条件2篇
- 回收废油协议书版专业
- 烫金烫印材购销合同
- DXI800分析仪性能保障措施
- 直线导轨的安装步骤公开课一等奖市优质课赛课获奖课件
- 广西职业技术学院教师招聘考试真题2022
- 铁路建设工程质量安全专项整治活动总结(完整版)
- UbuntuLinu操作系统上机实践实验题题库期末考试试卷24
- 邻菲罗啉安全技术说明书MSDS
- 部编版五年级道德与法治上册第三单元《我们的国土我们的家园-我们神圣的国土》第一课时
- GB/T 7284-2016框架木箱
- 脑与认知科学国家重点实验室开放课题申请书
- 国家自然科学基金申请经验汇总课件
评论
0/150
提交评论