版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区呼和浩特市秋实中学2021-2022学年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,且,则的值为
(
)(A)1
(B)2
(C)
(D)任意正数
参考答案:B略2.将排成一列,要求在排列中顺序为“”或“”(可以不相邻),这样的排列数有(
)A.12种
B.20种
C.40种
D.60种参考答案:C五个元素没有限制全排列数为,由于要求A,B,C的次序一定(按A,B,C或C,B,A)故除以这三个元素的全排列,可得×2=40.3.在数列中,若对于任意的均有为定值,且,则数列的前100项的和=
(
)A.132
B.299
C.68
D.99参考答案:B4.设是椭圆E:的左、右焦点,P为直线上一点,是底角为的等腰三角形,则椭圆E的离心率为(
)A. B. C. D.参考答案:C略5.已知复数,是的共轭复数,则·=(
)
A、 B、 C、1 D、参考答案:B略6.下列函数中,既是偶函数,又在区间上单调递减的函数是(
)A.
B.
C.
D.参考答案:A略7.椭圆上一点M到焦点的距离为2,N为的中点,为原点,则(
)A.2
B.4
C.6
D.参考答案:B8.已知函数f(x)是定义在R上的偶函数,当x>0时,xf′(x)>f(x),若f(2)=0,则不等式的解集为(
)A.{x|-2<x<0或0<x<2} B.{x|x<-2或x>2}C.{x|-2<x<0或x>2} D.{x|x<-2或0<x<2}参考答案:C9.过点作直线与圆相交于两点,那么的最小值为(
)
A
B
C
D参考答案:B10.在等差数列{an}中,a1+a9=10,则a5的值为().A.5 B.6 C.8 D.10参考答案:A【考点】等差数列的通项公式.【分析】本题主要是等差数列的性质等差中项的应用,用求出结果.【解答】解:由等差数列的性质得a1+a9=2a5,∴a5=5.故选A二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,若,且,都有不等式成立,则实数的取值范围是_____________
参考答案:12.动圆M与圆C1:(x+1)2+y2=36内切,与圆C2:(x-1)2+y2=4外切,求圆心M的轨迹方程
参考答案:13.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为__________米.参考答案:2000本题主要考查利用二次函数求极值.先将20棵树编号分别为,,,,,树苗放在编号为的树旁,列出每位同学往返总路程的表达式的化简式为,又,故由二次函数的性质得或时,最小,最小值为2000.故本题正确答案为2000.
14.已知双曲线﹣=1(a>0)的渐近线方程是y=±x,则其准线方程为
.参考答案:x=±根据题意,由双曲线的方程可得其渐近线方程,由题意分析可得a的值,由双曲线的几何性质可得c的值,进而将a、c的值代入双曲线的准线方程计算可得答案.解:根据题意,双曲线的方程为﹣=1,其渐近线方程为y=±x,又由该双曲线﹣=1的渐近线方程是y=±x,则有=,解可得a=3,其中c==5,则其准线方程为x=±,故答案为:x=±.15.有一棱长为a的正方体骨架,其内放置一气球,使其充气且尽可能地大(仍保持为球的形状),则气球表面积的最大值为__________.参考答案:错解:学生认为球最大时为正方体的内切球,所以球的直径为a,球的表面积为。这里学生未能弄清正方体骨架是一个空架子,球最大时与正方体的各棱相切,直径应为,所以正确答案为:。16.若展开式中各项系数和为32,其中,该展开式中含项的系数为_____.参考答案:1017.已知函数是定义在上的奇函数,,,则不等式的解集是
▲
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知和是椭圆的两个焦点,且点在椭圆C上.(1)求椭圆C的方程;(2)直线(m>0)与椭圆C有且仅有一个公共点,且与x轴和y轴分别交于点M,N,当△OMN面积取最小值时,求此时直线l的方程.参考答案:(1)∵和是椭圆的两个焦点,且点在椭圆C上,∴依题意,,又,故.---------------------2分由得b2=3.-----------------------------------------------------------3分故所求椭圆C的方程为.-----------------------------------------------4分(2)由,消y得(4k2+3)x2+8kmx+4m2-12=0,由直线l与椭圆C仅有一个公共点知,△=64k2m2-4(4k2+3)(4m2-12)=0,整理得m2=4k2+3.-----------------------------6分由条件可得k≠0,,N(0,m).所以.①------------------------------8分将m2=4k2+3代入①,得.因为|k|>0,所以,-------------------------------10分当且仅当,则,即时等号成立,S△OMN有最小值.-----11分因为m2=4k2+3,所以m2=6,又m>0,解得.故所求直线方程为或.----------------------------12分19.(13分)如图,在树丛中为了测量河对岸A、B两点之间的距离,观察者找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C.并测量得到图中的一些数据,此外,.(1)求的面积;(2)求A、B两点之间的距离.参考答案:(1)中,.
………………(2分)中,.
………………(4分)∴的面积为
.
………………(6分)(2)中,
……………(9分)==
……ks5u…(11分)==.
……………………(13分)20.已知点是椭圆内的一点,点M为椭圆上的任意一点(除短轴端点外),O为原点。过此点A作直线与椭圆相交于C、D两点,且A点恰好为弦CD的中点。再把点M与短轴两端点B1、B2连接起来并延长,分别交x轴于P、Q两点。(1)求弦CD的长度;(2)求证:为定值.
参考答案:解:(1)|CD|=
(2)略21.对宜昌某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15)100.25[15,20)24n[20,25)mp[25,30)20.05合计M1
(1)求出表中M、P及图中a的值;(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[10,15)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.参考答案:(1)由分组内的频数是,频率是知,,所以.………2分因为频数之和为,所以,.
…3分.
…………4分因为是对应分组的频率与组距的商,所以.
……………6分(2)因为该校高二学生有240人,分组内的频率是,所以估计该校高二学生参加社区服务的次数在此区间内的人数为人.
……………8分(3)这个样本参加社区服务的次数不少于20次的学生共有人,
…9分设在区间内的人为,在区间内的人为.则任选人共有,15种情况,
…11分而两人都在内只能是一种,所以所求概率为.……12分22.(12分)已知双曲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生鱼购销合同范例
- 自贡劳务派遣合同范例
- 留学服务佣金合同范例
- 维修配件合同范例
- 私人美甲店学徒合同范例
- 主体建筑施工合同范例
- 委托银行代收款协议书范文
- 瓦工简易合同范例
- 广告物料代发合同范例
- 柳州市2024版租房协议
- GB/T 11253-2019碳素结构钢冷轧钢板及钢带
- GB 13015-1991含多氯联苯废物污染控制标准
- 销售罗盘精髓-课件
- 借调通知函(模板)
- 《诗意中国》朗诵稿
- 第四章-技术美-(《美学原理》课件)
- 2021版《安全生产法》培训课件
- 小学数学二年级上册认识时间练习课3市公开课一等奖省名师优质课赛课一等奖课件
- 最新人教版三年级英语上册课件(完美版)Unit 1 Part B 第1课时
- 航站楼管理部《机场使用手册》实施细则
- 城市医疗集团管理制度
评论
0/150
提交评论