物理化学-第十三章 表面化学_第1页
物理化学-第十三章 表面化学_第2页
物理化学-第十三章 表面化学_第3页
物理化学-第十三章 表面化学_第4页
物理化学-第十三章 表面化学_第5页
已阅读5页,还剩237页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

物理化学电子教案—第十三章

第十三章表面物理化学2023/1/16引言2023/1/16第十三章表面物理化学§13.1表面张力及表面Gibbs自由能§13.2弯曲表面下的附加压力和蒸气压§13.3溶液的表面吸附§13.4液-液界面的性质§13.5膜§13.6液-固界面-润湿作用§13.7表面活性剂及其作用§13.8固体表面的吸附§13.9气-固相表面催化反应2023/1/16一、表面和界面1、界面:是指两相接触的分界面。3、界面类型:气-液界面,气-固界面,液-液界面,液-固界面,固-固界面。严格讲表面应是液体和固体与其饱和蒸气之间的界面,但习惯上把液体或固体与空气的界面称为液体或固体的表面。引言基本概念:2、表面:若其中一相为气体的界面通常称为表面。2023/1/161.气-液界面空气气-液界面引言2023/1/162.气-固界面气-固界面引言2023/1/163.液-液界面液-液界面引言2023/1/16玻璃板液-固界面4.液-固界面引言2023/1/165.固-固界面铁管Cr镀层固-固界面引言2023/1/16二、界面现象处在界面层的分子,一方面受到体相内相同物质分子的作用,另一方面受到性质不同的另一相中物质分子的作用,其作用力未必能相互抵销,因此,界面层会显示出一些独特的性质。引言界面现象:是指表面层分子与内部分子不同的现象。体相内部分子所受四周邻近相同分子的作用力是对称的,各个方向的力彼此抵销;2023/1/16界面现象的本质对于单组分系统,这种特性主要来自于同一物质在不同相中的密度不同;对于多组分系统,则特性来自于界面层的组成与任一相的组成均不相同。引言2023/1/16引言界面现象的本质2023/1/16最简单的例子:液体及其蒸气组成的表面液体内部分子所受的力可以彼此抵销,但表面分子受到体相分子的拉力大,受到气相分子的拉力小(因为气相密度低),所以表面分子受到被拉入体相的作用力。

这种作用力使表面有自动收缩到最小的趋势,并使表面层显示出一些独特性质,如表面张力、表面吸附、毛细现象、过饱和状态等。引言2023/1/16

界面层的特性,对其它方面的性质也有影响,而且随分散度增大,其影响更显著。

通常用比表面(单位体积或单位质量物体具有的表面积)来表示分散度,即三、比表面引言比表面:单位体积或单位质量物体具有的表面积。即2023/1/16对于一个边长为l的立方体,比表面是:

若分割为各种边长的小立方体,分散度愈大,比表面愈大(参数据表),表面能愈高,势必对系统的物理化学性质产生影响.引言比表面计算实例:2023/1/16例如:1g水作为球体存在时,其表面积为:若1g水分为半径10-7cm的小水珠,可得

表面积为:引言2023/1/16对胶体是高分散度系统,粒子的尺寸在10-9~10-7m之间,具有很大的表面积,突出地表现出表面效应.引言可见,分割的愈细表面积愈大.因此胶体化学中所研究的许多问题属于表面化学问题.2023/1/16分散度与比表面关系:分散程度越高,比表面越大,表面能也越高可见达到nm级的超细微粒,具有巨大的比表面积,因而具有许多独特的表面效应,成为新材料和多相催化方面的研究热点。若1g水分为半径10-7cm的小水珠,可得引言2023/1/16§13.1

表面张力及表面Gibbs自由能表面张力表面热力学的基本公式表面张力与温度的关系溶液的表面张力与溶液浓度的关系2023/1/16一、表面张力概念:由于表面层分子的受力不均衡,液滴趋向于呈球形,水银珠和荷叶上的水珠也收缩为球形。液体表面的最基本的特性是趋向于收缩从液膜自动收缩的实验,可以更好地认识这一现象,并引出表面张力概念。§13.1

表面张力及表面Gibbs自由能2023/1/16将一含有一个活动边框的金属线框架放在肥皂液中,然后取出悬挂,活动边在下面。由于金属框上的肥皂膜的表面张力作用,可滑动的边会被向上拉,直至顶部。液膜自动收缩的实验§13.1

表面张力及表面Gibbs自由能2023/1/16§13.1

表面张力及表面Gibbs自由能2023/1/16如果在活动边框上挂一重物,使重物质量W2与边框质量W1所产生的重力F与总的表面张力大小相等方向相反,则金属丝不再滑动。这时

l是滑动边的长度,因膜有两个面,所以边界总长度为2l,就是作用于单位边界上的表面张力。§13.1

表面张力及表面Gibbs自由能2023/1/16在两相(特别是气-液)界面上,处处存在着一种张力,这种力垂直与表面的边界,指向液体方向并与表面相切。把作用于单位边界线上的这种力称为表面张力,用或r

表示。表面张力的单位是:§13.1

表面张力及表面Gibbs自由能表面张力定义:2023/1/16表面张力也可以这样来理解:温度、压力和组成恒定时,可逆使表面积增加dA所需要对系统作的非体积功,称为表面功。用公式表示为:式中为比例系数,它在数值上等于当T,p及组成恒定的条件下,增加单位表面积时所必须对系统做的可逆非膨胀功。测定表面张力方法很多,如毛细管上升法、滴重法、吊环法、最大压力气泡法、吊片法和静液法等§13.1

表面张力及表面Gibbs自由能2023/1/16纯物质的表面张力与分子的性质有关,通常是

Antonoff发现,两种液体之间的界面张力是两种液体互相饱和时的表面张力之差,即水因为有氢键,所以表面张力也比较大(金属键)>(离子键)>(极性共价键)>(非极性共价键)这个经验规律称为Antonoff(安东诺夫)规则§13.1

表面张力及表面Gibbs自由能2023/1/16表面热力学的基本公式根据多组分热力学的基本公式(考虑了表面功)对需要考虑表面层的系统,由于多了一个表面相,在体积功之外,还要增加表面功,则基本公式为二、表面热力学的基本公式:2023/1/16表面热力学的基本公式所以考虑了表面功的热力学基本公式为从这些热力学基本公式可得2023/1/16表面自由能(surfacefreeenergy)三、表面自由能概念:

2、狭义定义:又可称为表面Gibbs自由能表面自由能的单位:

可见,

是在相应变不变的条件下,扩展单位表面积所引起体系热力学函数的增量.1、广义定义:2023/1/16界面张力与温度的关系温度升高,界面张力下降,当达到临界温度Tc时,界面张力趋向于零。这可用热力学公式说明:因为运用全微分的性质,可得:等式左方为正值,因为表面积增加,熵总是增加的。所以随T的增加而下降。四、表面张力与温度的关系:2023/1/16溶液的表面张力与溶液浓度的关系水的表面张力因加入溶质形成溶液而改变。能使水的表面张力明显升高的溶质称为非表面活性物质。如无机盐和不挥发的酸、碱等。这些物质的离子有较强的水合作用,趋向于把水分子拖入水中,非表面活性物质在表面的浓度低于在本体的浓度。如果要增加单位表面积,所作的功中还必须包括克服静电引力所消耗的功,所以表面张力升高。1、非表面活性物质五、溶液的表面张力与溶液浓度的关系:2023/1/16溶液的表面张力与溶液浓度的关系2、表面活性物质

加入后能使水的表面张力明显降低的溶质称为表面活性物质。这种物质通常含有亲水的极性基团和憎水的非极性碳链或碳环有机化合物。亲水基团进入水中,憎水基团企图离开水而指向空气,在界面定向排列。表面活性物质的表面浓度大于本体浓度,增加单位面积所需的功较纯水小。非极性成分愈大,表面活性也愈大。2023/1/16Traube(特劳贝)规则

Traube研究发现,同一种溶质在低浓度时表面张力的降低与浓度成正比

不同的酸在相同的浓度时,每增加一个CH2,其表面张力降低效应平均可增加约3.2倍溶液的表面张力与溶液浓度的关系2023/1/16曲线ⅠⅠⅢ非离子型有机物曲线Ⅱ非表面活性物质曲线Ⅲ表面活性剂稀溶液的表面张力和浓度曲线的三种类型溶液的表面张力与溶液浓度的关系2023/1/16ⅠⅢ溶液的表面张力与溶液浓度的关系返回2023/1/16§13.1表面张力及表面Gibbs自由能1、表面张力2、表自由能上次课复习2023/1/163、表面热力学的基本公式4、表面张力与温度的关系上次课复习2023/1/16上次课复习5、溶液的表面张力与溶液浓度的关系1、非表面活性物质2、表面活性物质能使表面张力明显升高的物质能使表面张力明显降低的物质2023/1/16§13.2弯曲表面下的附加压力与蒸气压1.弯曲表面上的附加压力1.在平面上2.在凸面上3.在凹面上2.Young-Laplace公式3.弯曲表面上的蒸气压——Klvin公式返回2023/1/161.在平面上对一小面积AB,沿AB的四周每点的两边都存在表面张力,大小相等,方向相反,所以没有附加压力设向下的大气压力为po,向上的反作用力也为po

,附加压力ps等于零。一、弯曲表面上的附加压力§13.2弯曲表面下的附加压力与蒸气压2023/1/162.在凸面上由于液面是弯曲的,则沿AB的周界上的表面张力不是水平的,作用于边界的力将有一指向液体内部的合力所有的点产生的合力和为ps,称为附加压力凸面上受的总压力为:§13.2弯曲表面下的附加压力与蒸气压2023/1/163.在凹面上由于液面是凹面,沿AB的周界上的表面张力不能抵消,作用于边界的力有一指向凹面中心的合力所有的点产生的合力和为ps,称为附加压力凹面上受的总压力为:§13.2弯曲表面下的附加压力与蒸气压2023/1/16由于表面张力的作用,在弯曲表面下的液体与平面不同,它受到一种附加的压力,附加压力的方向都指向曲面的圆心。凹面上受的总压力小于平面上的压力凸面上受的总压力大于平面上的压力§13.2弯曲表面下的附加压力与蒸气压2023/1/16附加压力的大小与曲率半径有关

例如,在毛细管内充满液体,管端有半径为R’的球状液滴与之平衡。外压为p0,附加压力为ps,液滴所受总压为:§13.2弯曲表面下的附加压力与蒸气压Ps=f(r)总压为=2023/1/16对活塞稍加压力,将毛细管内液体压出少许相应地其表面积增加dA使液滴体积增加dV克服附加压力ps所作的功等于可逆增加表面积的Gibbs自由能二、公式推导Ps=f(r)§13.2弯曲表面下的附加压力与蒸气压2023/1/16代入得§13.2弯曲表面下的附加压力与蒸气压2023/1/16凸面上因外压与附加压力的方向一致,液体所受的总压等于外压和附加压力之和,总压比平面上大。相当于曲率半径取了正值。曲率半径越小,附加压力越大凹面上因外压与附加压力的方向相反,液体所受的总压等于外压和附加压力之差,总压比平面上小。相当于曲率半径取了负值。讨论§13.2弯曲表面下的附加压力与蒸气压2023/1/161、假若液滴具有不规则的形状,则在表面上的不同部位曲面弯曲方向及其曲率不同,所具的附加压力的方向和大小也不同,这种不平衡的力,必将迫使液滴呈现球形.自由液滴或气泡通常为何都呈球形?2、相同体积的物质,球形的表面积最小,则表面总的Gibbs自由能最低,所以变成球状就最稳定§13.2弯曲表面下的附加压力与蒸气压2023/1/16由于附加压力而引起的液面与管外液面有高度差的现象称为毛细管现象把毛细管插入水中,管中的水柱表面会呈凹形曲面,致使水柱上升到一定高度。当插入汞中时,管内汞面呈凸形,管内汞面下降。三、毛细管现象§13.2弯曲表面下的附加压力与蒸气压2023/1/16毛细管内液柱上升(或下降)的高度可近似用如下的方法计算当毛细管内液柱上升(或下降)的高度计算§13.2弯曲表面下的附加压力与蒸气压2023/1/161.曲率半径R‘

与毛细管半径R的关系:如果曲面为球面2.

R'=R§13.2弯曲表面下的附加压力与蒸气压2023/1/16§13.2弯曲表面下的附加压力与蒸气压2023/1/161805年Young-Laplace导出了附加压力与曲率半径之间的关系式:特殊式(对球面):根据数学上规定,凸面的曲率半径取正值,凹面的曲率半径取负值。所以,凸面的附加压力指向液体,凹面的附加压力指向气体,即附加压力总是指向球面的球心。一般式:四、Young-Laplace(杨-拉普拉斯)公式§13.2弯曲表面下的附加压力与蒸气压2023/1/16yYoung-Laplace公式的推导在任意弯曲液面上取小矩形ABCD(红色面),其面积为xy。曲面边缘AB和BC弧的曲率半径分别为和作曲面的两个相互垂直的正截面,交线Oz为O点的法线。令曲面沿法线方向移动dz,使曲面扩大到A’B’C’D’(蓝色面),则x与y各增加dx和dy。y+dy2023/1/16Young-Laplace公式yy+dy移动后曲面面积增量为:增加这额外表面所需功为克服附加压力所作的功为这两种功应该相等2023/1/16Young-Laplace公式2023/1/16Young-Laplace公式yy+dy自相似三角形的比较得代入上式得若这两个都称为Young-Laplace公式2023/1/16弯曲表面上的蒸汽压——开尔文公式1、弯曲表面上的蒸汽压五、弯曲表面上的蒸汽压——开尔文公式2023/1/16弯曲表面上的蒸汽压——开尔文公式这就是Kelvin公式,式中r为密度,M为摩尔质量。2、开尔文公式

对凸面,R'取正值,R'越小,液滴的蒸汽压越高,或小颗粒的溶解度越大;对凹面,R'取负值,R'越小,小蒸汽泡中的蒸汽压越低。对于固体小颗粒的溶解度:2023/1/16当很小时3、开尔文简化公式3、开尔文简化公式2023/1/16推广的开尔文公式用于比较两个不同半径的液滴或气泡的蒸汽压之比用于比较两种不同半径的固体颗粒的饱和溶液浓度之比。4、推广的开尔文公式2023/1/16上次课复习1.弯曲表面上的附加压力§13.2弯曲表面下的附加压力与蒸气压2.Young-Laplace公式3.弯曲表面上的蒸气压——Klvin公式2023/1/16例1当水滴半径为10-8m时,其25℃饱和蒸气压的增加相当于升高多少温度所产生的效果。已知水的密度为0.998x103kg·m-3,摩尔蒸发焓为44.01kJ·mol-1。解:按开尔文公式又根据克拉贝龙--克劳修斯方程例题2023/1/16例题2023/1/16例2将正丁醇(摩尔质量M=0.074kg·mol-1)蒸气聚冷至273k,发现其过饱和度约达到4时方能自行凝结为液滴,若273k时正丁醇的表面张力γ=0.0261N·m-1,密度ρ=1x103kg·m-3

,试计算(a)在此过饱和度下所凝结成液滴的半径r

;(b)每一液滴中所含正丁醇的分子数。例题2023/1/16解:例题2023/1/16例题2023/1/16人工降雨:高空中如果没有灰尘,水蒸气可以达到相当大的过饱和程度(比平液面时液体的饱和蒸汽压高许多倍)而不致凝结成水。因为此时高空的水蒸气压力虽然对平液面的水来说已是过饱和了,但对将要形成的水滴来说却尚未饱和,这就意味着小水滴难于形成。开尔文公式的应用示例1、人工降雨可设想:如果在空中撒入凝结核心(AgI晶粒)使凝聚水滴的初始曲率半径加大,蒸汽可以在较低的过饱和度时开始在这些微粒的表面上凝成水滴,形成人工降雨。六、开尔文公式的应用示例2023/1/16开尔文公式的应用示例液体暴沸:平液面的液体达沸点时,饱和蒸汽压等于外压。沸腾时液体形成的气泡必须经过由无到有、由小到大的过程。最初形成的半径极小的气泡内蒸汽压远小于外压,这意味着在外界压迫下小气泡很难形成,使得液体不易沸腾而成为过热液体。2、液体暴沸现象2023/1/16开尔文公式的应用示例过热较多时易发生暴沸。为防止暴沸,加热液体时要加入沸石或插入毛细管,因为沸石是多孔穴的,其孔中已有曲率半径较大的气泡存在,泡内压力不会很小,达到沸腾温度时即会沸腾。2023/1/16毛细管凝聚:当毛细管中液面为凹面时,毛细管中的饱和蒸汽压低于大气中的饱和蒸汽压,因而可以在较低的蒸汽压下凝聚。开尔文公式的应用示例3、有关毛细管凝聚2023/1/16开尔文公式的应用示例4、锄地保墒:天气干旱时锄地可以保持土壤水分原因有两个方面:一是切断毛细管以免土壤水分沿毛细管上升而蒸发。另一方面,由于水在土壤中呈凹面,饱和蒸气压小于水平面,因此在土壤表面新形成的毛细管又易于使空气中的水分在较低的蒸汽压下凝聚。2023/1/16测定液体表面张力的方法1.毛细管上升法(最简单、最精确)将干净的玻璃毛细管插入液体中时,若此液体能润湿毛细管壁,由于表面张力的作用,液体沿毛细管上升,直到上升的力被液柱所产生的重力平衡而停止上升,有R为毛细管半径;r为表面张力;h为液柱高;Q为接触角2gcosq/R=Drgh六、测定液体表面张力的方法2023/1/16毛细管上升法2023/1/162.环法(表面张力或界面张力)将铂丝制成圆挂环,挂在扭力天平上,转动扭力丝使环缓缓上升,此时会拉起一圆柱形的液体(存在表面张力)。拉到某程度,环与液面就会脱离,当二者突然脱离时,所需的最大拉力F与液体表面张力相等,也与沿环周围的表面张力反抗向上的拉力相等,则测定液体表面张力的方法2023/1/16铂丝环液柱环法2023/1/163.最大压力气泡法实验时,使毛细管管口与被测液体的表面接触,然后从A瓶放水抽气,随着毛细管内外压差的增大,毛细管口的气泡慢慢长大,泡的曲率半径R开始由大变小,直到形成半球形(R=r),R最小,此时压差最大,然后泡又逐渐长大。测定液体表面张力的方法2023/1/164.滴重(滴体积)法将液体在磨平了的毛细管口慢慢形成液滴并滴下,收集液滴,称重或采用带刻度的毛细管移液管直接读出体积。达平衡时,从外半径为r的毛细管滴下的液体重量应等于毛细管周长乘上表面张力即测定液体表面张力的方法2023/1/16§13.3

溶液的表面吸附溶液的表面吸附——Gibbs吸附等温式*Gibbs吸附等温式的推导2023/1/16

对溶液,表面张力和溶液表面层的组成有密切关系,可以自动调节不同组分在表面层中的数量来促使体系的Gibbs自由能降低。一、溶液的表面吸附表面积的缩小和表面张力的降低都可以降低体系的Gibbs自由能。定温下纯液体的表面张力为定值,因此对于纯液体降低体系Gibbs自由能的唯一办法是尽可能地缩小液体表面积。一、溶液的表面吸附降低降低2023/1/16表面自由能(Gibbs)降低:降低降低纯液体:对溶液:降低降低降低一、溶液的表面吸附(溶液的表面吸附)2023/1/16若加入的溶质降低表面张力,则溶质倾向于集中在表面层以降低Gibbs自由能,表面层中浓度大于体相浓度;反之若溶质使表面张力升高,则其在表面层中的浓度小于体相浓度。再加上扩散作用,两种相反过程的作用达平衡的结果:溶液表面层的浓度与体相浓度不同,这种现象即称为表面吸附。若表面层中浓度大于体相浓度;称为正吸附。若表面层中浓度小于体相浓度;称为负吸附。二、表面吸附现象二、表面吸附现象2023/1/16

Gibbs给出了指定温度下溶液浓度、表面张力和吸附量之间的关系,即为Gibbs吸附公式。a2为溶液中溶质活度;g为溶液的表面张力;G2为溶质的表面过剩(表面超量surfaceexcess);dg/da2是在等温下,表面张力g随溶质活度的变化率。

G2的物理意义是:在单位面积的表面层中,所含溶质的物质的量与具有相同数量溶剂的本体溶液中所含溶质的物质的量之差值。三、Gibbs吸附公式三、Gibbs吸附公式2023/1/16Gibbs吸附公式的推导吸附作用的热力学,通常有两种处理方法:Gibbs表面热力学与Guggenheim(古根海姆)表面热力学Gibbs法:认为界面是二维的,有面积而无体积;Guggenheim法:认为界面是三维的,有面积也有体积。Guggenheim(古根海姆)法更接近于界面的真实面貌。2023/1/16*Gibbs吸附等温式的推导表面相的定义“”“”2023/1/16*Gibbs吸附等温式的推导表面相SS‘面位置的选定浓度与界面的距离2023/1/16这里介绍Gibbs的一种处理方法,可更好理解。设有二元溶液:溶剂(1)+溶质(2),在一定T、p下达到表面吸附平衡后,各组分在溶液本体和表面层中的分配如下:溶液本体表面层溶剂1溶质2、、、分别代表物质的量。Gibbs吸附公式的推导2023/1/16则因为定温定压,所以又因为假定溶液本体浓度恒定,所以(1)

Gibbs吸附公式的推导2023/1/16式中代表表面层中溶剂1和溶剂2的化学势;代表表面层中溶剂1和溶剂2的物质的量。Gibbs吸附公式的推导2023/1/16当恒定时,上式积分得:因为是状态函数,可进行全微分,所以(2)

比较等式(1)与(2),(1)得:(3)

Gibbs吸附公式的推导2023/1/16而适合于溶液本体的Gibbs-Duhem方程为:或因为吸附达到平衡时,,所以Gibbs吸附公式的推导代入式(3)得:2023/1/16令定义为溶质2的表面吸附量(表面超量),则Gibbs吸附公式的推导2023/1/16因为,所以于是有对于理想溶液或理想稀溶液,,则这就是Gibbs吸附等温式。Gibbs吸附公式的推导2023/1/16Gibbs吸附公式讨论对于稀溶液吉布斯吸附公式通常表示为:(1)dg/dc2<0,增加溶质的浓度使表面张力下降,G2为正值,是正吸附。表面层中溶质浓度大于本体浓度。表面活性物质属于这种情况。(2)dg/dc2>0,增加溶质的浓度使表面张力升高,G2为负值,是负吸附。表面层中溶质浓度低于本体浓度。非表面活性物质属于这种情况。Gibbs吸附公式讨论2023/1/16§13.3溶液的表面吸附Gibbs吸附等温式上次课复习表面过剩(1)是正吸附(2)是负吸附2023/1/16直接微分法,得到与c之间的函数关系式,即:=f(c)

,直接求微分。r=72-0.5c+0.2c2Gibbs吸附公式讨论1、直接微分法Gibbs吸附公式讨论求2023/1/16例:298K,乙醇水溶液中的表面张力与浓度c(mol/dm3)的关系为g=72-0.5c+0.2c2,计算浓度为0.5mol/dm3时乙醇的表面超量G(mol/cm2)为多少?解:=-0.5+0.4cr=72-0.5c+0.2c2Gibbs吸附公式讨论2023/1/16作图法,测量不同浓度的,做-c曲线,求切线斜率可得。2、的求算(作图法)Gibbs吸附公式2023/1/16由-c曲线可求出吸附量

,若得到不同浓度下的

,可绘出

-c曲线(吸附等温线)。Gibbs吸附公式对于表面活性物质,2与a2之间的关系可以兰缪尔吸附公式表示为:3、两亲分子在气液界面上的定向排列2023/1/16Gibbs吸附公式

根据实验,脂肪酸在水中的浓度达到一定数值后,它在表面层中的超额为一定值,与本体浓度无关,并且和它的碳氢链的长度也无关。

这时,表面吸附已达到饱和,脂肪酸分子合理的排列是羧基向水,碳氢链向空气。2023/1/16Gibbs吸附公式

根据这种紧密排列的形式,可以计算每个分子所占的截面积Am。式中L为阿伏加德罗常数,当达到饱和吸附时,T可以作为单位表面上溶质的物质的量。2023/1/161、定向排列2、分子中碳原子排列讨论讨论2023/1/16§13.4液-液界面的性质液-液界面的铺展单分子表面膜——不溶性的表面膜表面压*曲线与表面不溶膜的结构类型不溶性表面膜的一些应用2023/1/16§13.4液-液界面的性质一种液体能否在另一种不互溶的液体上铺展,取决于两种液体本身的表面张力和两种液体之间的界面张力。一般说,铺展后,表面自由能下降,则这种铺展是自发的。大多数表面自由能较低的有机物可以在表面自由能较高的水面上铺展。1、液-液界面的铺展2023/1/16设液体1,2和气体间的界面张力分别为g1,g,

g2,g和g1,2在三相接界点处,g1,g和g1,2企图维持液体1不铺展而g2,g的作用是使液体铺展如果g2,g>(g1,g+g1,2),则液体1能在液体2上铺展反之,则液体1不能在液体2上铺展液-液界面的铺展2023/1/16单分子表面膜——不溶性的表面膜

两亲分子具有表面活性,溶解在水中的两亲分子可以在界面上自动相对集中而形成定向的吸附层(亲水的一端在水层)并降低水的表面张力1765年Franklin就曾用油滴铺展到水面上,得到厚度约为2.5nm的很薄油层2、单分子表面膜——不溶性的表面膜2023/1/16单分子表面膜——不溶性的表面膜2023/1/16单分子表面膜——不溶性的表面膜又有人发现某些难溶物质铺展在液体的表面上所形成的膜,确实是只有一个分子的厚度,所以这种膜就被称为单分子层表面膜。制备时要选择适当的溶剂,如对成膜材料有足够的溶解能力,在底液上又有很好的铺展能力,其比重要低于底液,且易于挥发等。成膜材料一般是:

(1)两亲分子,带有比较大的疏水基团(2)天然的和合成的高分子化合物2023/1/16表面压(surfacepressure)当浓度很小时,溶液表面张力与浓度具有线性关系,即K为常数,0为纯溶剂的表面张力,则Gibbs吸附等温式为表面压则定义为3、表面压2023/1/16式中a为表面含1mol溶质时所具有的表面积。该式可看成是二维表面理想气体方程式。表面压可理解为,若溶液表面上有一浮片,在单位长度浮片上所施加的力。对稀溶液,可认为:则表面压(surfacepressure)2023/1/16表面压式中p称为表面压,g0为纯水的表面张力,g为溶液的表面张力。由于g0>g,所以液面上的浮片总是推向纯水一边。由实验可以证实表面压的存在。在纯水表面放一很薄的浮片,在浮片的一边滴油,由于油滴在水面上铺展,会推动浮片移向纯水一边,把对单位长度浮片的推动力称为表面压。1917年Langmuir设计了直接测定表面压的仪器。2023/1/16Langmuir膜天平2023/1/16Langmuir膜天平图中K为盛满水的浅盘,AA是云母片,悬挂在一根与扭力天平刻度盘相连的钢丝上,AA的两端用极薄的铂箔与浅盘相连。

XX是可移动的边,用来清扫水面,或围住表面膜,使它具有一定的表面积。在XXAA面积内滴加油滴,油铺展时,用扭力天平测出它施加在AA边上的压力。这种膜天平的准确度可达1×10-5N/m。2023/1/16*曲线与表面不溶膜的结构类型从曲线可以对表面膜的结构有所了解π/(mN/m)0.50.21020300.20.258凝聚膜(Lc)转变膜(I)l’扩张膜(Le)l气液平衡区g气态膜(G)g’2023/1/16*曲线与表面不溶膜的结构类型不溶膜的分子状态示意图(b)(c)(a)2023/1/16不溶性表面膜的一些应用(1)降低水蒸发的速度(2)测定蛋白质分子的摩尔质量c是单位表面上蛋白质的质量(3)使化学反应的平衡位置发生移动测定膜电势可以推测分子在膜上是如何排列的,可以了解表面上的分布是否均匀等等。2023/1/16§13.5膜L-B膜的形成生物膜简介*自发单层分散2023/1/16§13.5膜L-B膜的形成不溶物的单分子膜可以通过简单的方法转移到固体基质上,经过多次转移仍保持其定向排列的多分子层结构。这种多层单分子膜是Langmuir(朗格缪尔)和Blodgett(布劳杰特)女士首创的,故称L-B膜。由于形成单分子膜的物质与累积(或转移)方法的不同,可以形成不同的多分子膜,如(1)X型多分子层(2)Y型多分子层(3)Z型多分子层2023/1/16L-B膜的形成与类型X累积Y累积Z累积2023/1/16生物膜简介细胞膜就是一种生物膜膜主要由脂质、蛋白质和糖类等物质组成细胞膜蛋白质就其功能可分为以下几类:生物膜是一个具有特殊功能的半透膜,它的功能主要是:能量传递、物质传递、信息识别与传递

1.能识别各种物质、在一定条件下有选择地使其通过细胞膜

2.分布在细胞膜表面,能“辩认”和接受细胞环境中特异的化学性刺激

3.属于膜内酶类,还有与免疫功能有关的物质2023/1/16生物膜简介生物膜的主要功能之一是物质运送物质运送可分为被动运送和主动运送两大类被动运送是物质从高浓度一侧,顺浓度梯度通过膜运送到低浓度一侧,是自发过程主动运送是指细胞膜通过特定的通道或运载体把某种特定的分子(或离子)转运到膜的另一侧去,这种转运有选择性。各种细胞膜上普遍存在着一种称为钠钾泵的结构,它们能够逆着浓度差主动地将细胞内的Na+移出膜外,同时将细胞外的K+移入膜内,因而形成和保持了Na+和K+在膜两侧的特殊分布。2023/1/16§13.6液-固界面——润湿作用粘湿过程浸湿过程铺展过程接触角与润湿方程2023/1/16§13.6液-固界面——润湿作用什么是润湿过程?即:粘湿、浸湿和铺展滴在固体表面上的少许液体,取代了部分固-气界面,产生了新的液-固界面。这一过程称之为润湿过程1、粘湿过程液体与固体从不接触到接触,使部分气-液界面和固-气界面转变成新的固-液界面的过程2023/1/16液固§13.6液-固界面——润湿作用2023/1/16设各相界面都是单位面积,该过程的Gibbs自由能变化值为:称为粘湿功粘湿功的绝对值愈大,液体愈容易粘湿固体,界面粘得愈牢§13.6液-固界面——润湿作用2023/1/16什么是浸湿过程?该过程的Gibbs自由能的变化值为:在恒温恒压可逆情况下,将具有单位表面积的固体浸入液体中,固-气界面转变为液-固界面的过程称为浸湿过程称为浸湿功,它是液体在固体表面上取代气体能力的一种量度,有时也被用来表示对抗液体表面收缩而产生的浸湿能力,故又称为粘附张力液体能浸湿固体2、浸湿过程2023/1/16固体浸湿过程示意图气液固固体浸湿过程示意图气液固体浸湿过程示意图气液固体浸湿过程示意图气液固体浸湿过程示意图气液固体浸湿过程示意图气液固体浸湿过程示意图气液固什么是浸湿过程?2023/1/16铺展过程等温、等压条件下,单位面积的液固界面取代了单位面积的气固界面并产生了单位面积的气液界面,这种过程称为铺展过程.

S称为铺展系数,若S≥0,说明液体可以在固体表面自动铺展。等温、等压条件下,可逆铺展单位面积时,Gibbs自由能的变化值为3、铺展过程2023/1/16铺展过程固液气固液气固液气固液气固液气固液气固液气固液气固液气固液气固液气固液气液体在固体表面上的铺展2023/1/16接触角与润湿方程在气、液、固三相交界点,气-液与液-固界面张力之间的夹角称为接触角,通常用q表示。接触角4、接触角与润湿方程2023/1/16接触角与润湿方程若接触角大于90°,说明液体不能润湿固体,如汞在玻璃表面;若接触角小于90°,液体能润湿固体,如水在洁净的玻璃表面。接触角的大小可以用实验测量,也可以用公式计算实验测量2023/1/16接触角与润湿方程可以利用实验测定的接触角和气-液界面张力,计算润湿过程的一些参数能被液体所润湿的固体,称为亲液性的固体,常见的液体是水,所以极性固体皆为亲水性固体。不被液体所润湿者,称为憎液性的固体。非极性固体大多为憎水性固体。润湿方程2023/1/16接触角与润湿方程S称为铺展系数Wi浸湿功称为粘湿功2023/1/16§13.7

表面活性剂及其作用表面活性剂分类*表面活性剂的结构对其效率及能力的影响*表面活性剂的HLB值表面活性剂在水中的溶解度表面活性剂的一些重要作用及其应用2023/1/16能显著改变液体表面张力或两相之间的界面张力的物质叫表面活性剂1、表面活性剂:表面活性剂为什么使表面张力显著下降?2、双亲结构表面活性剂具有亲油和亲水基团,溶于水后,亲水集团受到水分子吸引,甚至足以把一短截非极性烃链一并拉入水中,而亲油基团受到水分子的排斥。为了克服这种不稳定状态,就只有占据溶液的表面,将亲油伸向气相,亲水伸向水相。形成定向单分子吸附,使气-水和油-水,界面的张力下降,表现出表面活性。§13.7表面活性剂及其作用一、表面活性剂分类2023/1/16如肥皂是脂肪酸类(R-COO-)表面活性剂,其结构中的脂肪酸碳链(R-)为亲油基团,解离的脂肪酸根(COO-)为亲水基团。3、常见类型:§13.7表面活性剂及其作用

表面活性剂通常采用按化学结构来分类,分为离子型和非离子型两大类,离子型中又可分为阳离子型、阴离子型和两性型表面活性剂。2023/1/16表面活性剂的分类1.离子型2.非离子型表面活性剂显然阳离子型和阴离子型的表面活性剂不能混用,否则可能会发生沉淀而失去活性作用。阳离子型阴离子型两性型小极性头大极性头2023/1/163、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠2、阳离子表面活性剂:季铵化物4、非离子表面活性剂:脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯表面活性剂的分类2023/1/16表面活性剂的结构对其效率及能力的影响表面活性剂效率使水的表面张力降低到一定值时所需要的表面活性剂的浓度。显然,所需浓度愈低,表面活性剂的性能愈好。表面活性剂的能力能够把水的表面张力降低到的最小值。显然,能把水的表面张力降得愈低,该表面活性剂愈有效。活性剂的能力也称为有效值。二、表面活性剂的结构对其效率及能力的影响2023/1/16表面活性剂的结构对其效率及能力的影响表面活性剂的效率与能力在数值上常常是相反的。例如,当憎水基团的链长增加时,活性剂的效率提高,而能力可能降低了。当憎水基团有支链或不饱和程度增加时,效率降低,能力却增加。

2023/1/16对(正-烷基)苯磺酸钠的水溶液在348K时的表面张力与浓度的关系表面活性剂的结构对其效率及能力的影响2023/1/16对-十二烷基苯磺酸钠的水溶液在348K时的表面张力与浓度的关系表面活性剂的结构对其效率及能力的影响2023/1/16表面活性剂是两亲分子。溶解在水中达一定浓度时,其非极性部分会自相结合,形成聚集体,使憎水基向里、亲水基向外。随着亲水基不同和浓度不同,形成的胶束可呈现棒状、层状或球状等多种形状。

这种多分子聚集体称为胶束。形成胶束的最低浓度称为临界胶束浓度

继续增加表面活性剂的量,只能增加溶液中胶束的数量和大小表面活性剂的结构对其效率及能力的影响2023/1/16稳定化稳定化憎水基亲水基和水相斥和水吸引形成胶束的稳定化过程2023/1/16胶束的形状2023/1/16胶束的形状2023/1/16-+-+-+-+-+-+-+-+-+-+-+-+球形胶束H2O(a)(b)棒状胶束(c)水棒状胶束的六角束(d)层状胶束(e)1~3.5nm1~3.5nm类脂黑膜(g)H2OoilH2O醇油或O/W微乳液W/O微乳液(h)H2OH2O单室泡囊或(i)胶束的结构形成示意图2023/1/16临界胶束浓度表面活性剂在水中随着浓度增大,表面上聚集的活性剂分子形成定向排列的紧密单分子层,多余的分子在体相内部也三三两两的以憎水基互相靠拢,聚集在一起形成胶束。

这时溶液性质与理想性质发生偏离,在表面张力对浓度绘制的曲线上会出现转折。继续增加活性剂浓度,表面张力不再降低,而体相中的胶束不断增多、增大。

这种开始形成胶束的最低浓度称为临界胶束浓度,简称CMC2023/1/16界面张力表面张力临界胶束浓度去污作用密度改变电导率摩尔电导率渗透压浓度表面活性剂溶液的性质临界胶束浓度时各种性质的突变2023/1/16*表面活性剂的HLB值表面活性剂都是两亲分子,由于亲水和亲油基团的不同,很难用相同的单位来衡量亲水基团的亲水性和亲油基团的亲油性可以有两种类型的简单的比较方法1.表面活性剂的亲水性=亲水基的亲水性-憎水基的憎水性2023/1/16*表面活性剂的HLB值HLB值=亲水基质量亲水基质量+憎水基质量×100/5例如:石蜡无亲水基,所以

HLB=0

Griffin(格里芬)提出了用HLB(hydrophile-lipophilebalance,亲水亲油平衡)值来表示表面活性剂的亲水性 聚乙二醇,全部是亲水基,HLB=20。其余非离子型表面活性剂的HLB值介于0~20之间。2023/1/16根据需要,可根据HLB值选择合适的表面活性剂HLB值02468101214161820

||———||——||——||——||

石蜡W/O乳化剂润湿剂洗涤剂增溶剂| |————|聚乙二醇

O/W乳化剂例如:HLB值在2~6之间,作油包水型的乳化剂8~10之间作润湿剂;12~18之间作为水包油型乳化剂。*表面活性剂的HLB值2023/1/16表面活性剂在水中的溶解度表面活性剂的亲水性越强,其在水中的溶解度越大,而亲油性越强则越易溶于“油”故表面活性剂的亲水亲油性也可以用溶解度或与溶解度有关的性质来衡量离子型表面活性剂的溶解度随着温度的升高而增加,当达到一定温度后,其溶解度会突然迅速增加,这个转变温度称为Kraff点同系物的碳氢链越长,其Kraff点越高,因此,Kraff点可以衡量离子型表面活性剂的亲水、亲油性2023/1/16表面活性剂在水中的溶解度非离子型表面活性剂的亲水基主要是聚乙烯基。升高温度会破坏聚乙烯基同水的结合,而使溶解度下降,甚至析出。所以加热时可以观察到溶液发生混浊现象。发生混浊的最低温度称为浊点环氧乙烯的分子数越少,亲水性越强,浊点就越高。反之,亲油性越强,浊点越低。可利用浊点来衡量非离子型表面活性剂的亲水、亲油性。2023/1/16§13.4液-液界面的性质上次课复习1、表面压2、不溶性表面膜的一些应用2023/1/16§13.6液-固界面——润湿作用上次课复习2、润湿方程1、接触角2023/1/16§13.7表面活性剂及其作用上次课复习1、表面活性剂:2、表面活性剂分类:3、临界胶束浓度CMC4、表面活性剂的HLB值2023/1/16上次课复习5、表面活性剂的一些重要作用及其应用1)润湿作用2)起泡作用3)增溶作用4)乳化作用5)洗涤作用2023/1/16表面活性剂的一些重要作用及其应用表面活性剂的用途极广,主要有五个方面:1.润湿作用

表面活性剂可以降低液体表面张力,改变接触角的大小,从而达到所需的目的。例如,要农药润湿带蜡的植物表面,要在农药中加表面活性剂;如果要制造防水材料,就要在表面涂憎水的表面活性剂,使接触角大于90°。表面活性剂的一些重要作用及其应用2023/1/16表面活性剂的一些重要作用及其应用首先将粗矿磨碎,倾入浮选池中。在池水中加入捕集剂和起泡剂等表面活性剂。搅拌并从池底鼓气,带有有效矿粉的气泡聚集表面,收集并灭泡浓缩,从而达到了富集的目的。不含矿石的泥砂、岩石留在池底,定时清除浮游选矿2023/1/16泡水矿物浮游选矿的原理图选择合适的捕集剂,使它的亲水基团只吸在矿砂的表面,憎水基朝向水。当矿砂表面有5%被捕集剂覆盖时,就使表面产生憎水性,它会附在气泡上一起升到液面,便于收集。有用矿物废矿石憎水表面表面活性剂的一些重要作用及其应用2023/1/16“泡”就是由液体薄膜包围着气体。有的表面活性剂和水可以形成一定强度的薄膜,包围着空气而形成泡沫,用于浮游选矿、泡沫灭火和洗涤去污等,这种活性剂称为起泡剂。有时要使用消泡剂,在制糖、制中药过程中泡沫太多,要加入适当的表面活性剂降低薄膜强度,消除气泡,防止事故。起泡剂所起的主要作用有:(1)降低表面张力(2)使泡沫膜牢固,有一定的机械强度和弹性(3)使泡沫有适当的表面黏度2.起泡作用表面活性剂的一些重要作用及其应用2023/1/16表面活性剂的一些重要作用及其应用2023/1/16非极性有机物如苯在水中溶解度很小,加入油酸钠等表面活性剂后,苯在水中的溶解度大大增加,这称为增溶作用。增溶作用与普通的溶解概念是不同的,增溶的苯不是均匀分散在水中,而是分散在油酸根分子形成的胶束中。经X射线衍射证实,增溶后各种胶束都有不同程度的增大,而整个溶液的的依数性变化不大。3.增溶作用表面活性剂的一些重要作用及其应用2023/1/16增溶作用的特点(1)增溶作用可以使被溶物的化学势大大降低,是自发过程,使整个系统更加稳定。(2)增溶作用是一个可逆的平衡过程(3)增溶后不存在两相,溶液是透明的增溶作用的应用极为广泛,例如,增溶作用是去污作用中很重要的一部分,工业上合成丁苯橡胶时,利用增溶作用将原料溶于肥皂溶液中再进行聚合反应(即乳化聚合),还可以应用于染色、农药以增加农药杀虫灭菌的功能以及在医药和生理现象等方面。表面活性剂的一些重要作用及其应用2023/1/16一种或几种液体以大于10-7m直径的液珠分散在另一不相混溶的液体之中形成的粗分散系统称为乳状液。要使它稳定存在必须加乳化剂。根据乳化剂结构的不同可以形成以水为连续相的水包油乳状液(O/W),或以油为连续相的油包水乳状液(W/O)。有时为了破坏乳状液需加入另一种表面活性剂,称为破乳剂,将乳状液中的分散相和分散介质分开。例如原油中需要加入破乳剂将油与水分开。4.乳化作用表面活性剂的一些重要作用及其应用2023/1/16简单的乳状液通常分为两大类。习惯上将不溶于水的有机物称油,将不连续以液珠形式存在的相称为内相,将连续存在的液相称为外相。1.水包油乳状液2.油包水乳状液用O/W表示。内相为油,外相为水,这种乳状液能用水稀释,如牛奶等。用W/O表示。内相为水,外相为油,如油井中喷出的原油。表面活性剂的一些重要作用及其应用分类:2023/1/16检验水包油乳状液加入水溶性染料如亚甲基蓝,说明水是连续相。加入油溶性的染料红色苏丹Ⅲ,说明油是不连续相。表面活性剂的一些重要作用及其应用2023/1/16肥皂是用动、植物油脂和NaOH或KOH皂化而制得肥皂在酸性溶液中会形成不溶性脂肪酸,在硬水中会与钙、镁等离子生成不溶性的脂肪酸盐,不但降低了去污性能,而且污染了织物表面。用烷基硫酸盐、烷基芳基磺酸盐及聚氧乙烯型非离子表面活性剂等作原料制成的合成洗涤剂去污能力比肥皂强,且克服了肥皂的如上所述的缺点。去污过程是带有污垢(用D表示)的固体(s),浸入水(w)中,在洗涤剂的作用下,降低污垢与固体表面的粘湿功,使污垢脱落而达到去污目的.5.洗涤作用表面活性剂的一些重要作用及其应用2023/1/16好的洗涤剂必须具有:(1)良好的润湿性能(2)能有效的降低被清洗固体与水及污垢与水的界面张力,降低沾湿功(3)有一定的起泡或增溶作用(4)能在洁净固体表面形成保护膜而防止污物重新沉积表面活性剂的一些重要作用及其应用2023/1/16洗涤剂中通常要加入多种辅助成分,增加对被清洗物体的润湿作用,又要有起泡、增白、占领清洁表面不被再次污染等功能。其中占主要成分的表面活性剂的去污过程可用示意图说明:

A.水的表面张力大,对油污润湿性能差,不容易把油污洗掉。

B.加入表面活性剂后,憎水基团朝向织物表面和吸附在污垢上,使污垢逐步脱离表面。

C.污垢悬在水中或随泡沫浮到水面后被去除,洁净表面被活性剂分子占领。表面活性剂的一些重要作用及其应用2023/1/16表面活性剂的去污过程示意图表面活性剂的一些重要作用及其应用2023/1/16在合成洗涤剂中往往除了加某些起泡剂、乳化剂等表面活性物质外,还要加入一些硅酸盐、焦磷酸盐等非表面活性物质,使溶液有一定的碱性,增强去污能力,同时也可防止清洁固体表面重新被污物沉积。由于焦磷酸盐随废水排入江湖中会引起藻类疯长,破坏水质,危及鱼虾生命现在已禁止使用含磷洗涤剂,目前主要用铝硅酸盐等一类分散度很好的白色碱性非表面活性物质代替焦磷酸盐,能达到同样的洗涤效果。表面活性剂的一些重要作用及其应用2023/1/16§13.8固体表面的吸附一、固体表面的特点二、吸附等温线1、Langmuir等温式2、Freundlich等温式3、BET多层吸附公式*Tëмкин(乔母金)方程式2023/1/16§13.8固体表面的吸附三、吸附现象的本质——化学吸附和物理吸附1、化学吸附热3、影响气-固界面吸附的主要因素2、固体在溶液中的吸附——吸附等温线2023/1/16固体表面上的原子或分子与液体一样,受力也是不均匀的,所以固体表面也有表面张力和表面能§13.8固体表面的吸附2023/1/16

1.固体表面分子(原子)移动困难,只能靠吸附来降低表面能

2.固体表面是不均匀的,不同类型的原子的化学行为、吸附热、催化活性和表面态能级的分布都是不均匀的。

3.固体表面层的组成与体相内部组成不同

§13.8固体表面的吸附一、固体表面的特点2023/1/16固体的表面结构平台附加原子台阶附加原子扭结原子单原子台阶平台空位§13.8固体表面的吸附2023/1/16二、吸附等温线当气体或蒸汽在固体表面被吸附时,固体称为吸附剂,被吸附的气体称为吸附质。常用的吸附剂有:硅胶、分子筛、活性炭等。为了测定固体的比表面,常用的吸附质有:氮气、水蒸气、苯或环己烷的蒸汽等。§13.8固体表面的吸附(吸附量与温度、压力的关系)吸附剂:吸附质:2023/1/161、吸附量的表示方法:(2)单位质量的吸附剂所吸附气体物质的量(1)单位质量的吸附剂所吸附气体的体积 体积要换算成标准状况(STP)§13.8固体表面的吸附2023/1/162、吸附量与温度、压力的关系对于一定的吸附剂与吸附质的系统,达到吸附平衡时,吸附量是温度和吸附质压力的函数,即:通常固定一个变量,求出另外两个变量之间的关系,例如:(1)T=常数,q=f(p),称为吸附等温式(2)p=常数,q=f(T),称为吸附等压式(3)q=常数,p=f(T),称为吸附等量式§13.8固体表面的吸附2023/1/16重量法测定气体吸附实验装置如图。将吸附剂放在样品盘3中,吸附质放在样品管4中。首先加热炉子6,并使体系与真空装置相接。到达预定温度和真空度后,保持2小时,脱附完毕,记下石英弹簧2下面某一端点的读数。根据加样前后该端点读数的变化,可知道加样品后石英弹簧的伸长,从而算出脱附后净样品的质量§13.8固体表面的吸附2023/1/16吸附等温线吸附等温线样品脱附后,设定一个温度,如253K,控制吸附质不同压力,根据石英弹簧的伸长可以计算出相应的吸附量,就可以画出一根253K的吸附等温线,如图所示用相同的方法,改变吸附恒温浴的温度,可以测出一组不同温度下的吸附等温线。§13.8固体表面的吸附2023/1/16氨在炭上的吸附等温线§13.8固体表面的吸附2023/1/16从吸附等温线画出等压线和等量线§13.8固体表面的吸附2023/1/163、吸附等温线的类型从吸附等温线可以反映出吸附剂的表面性质、孔分布以及吸附剂与吸附质之间的相互作用等有关信息。常见的吸附等温线有如下5种类型:(图中p/ps称为比压,ps是吸附质在该温度时的饱和蒸汽压,p为吸附质的压力)§13.8固体表面的吸附2023/1/16§13.8固体表面的吸附2023/1/16(Ⅰ)在2.5nm以下微孔吸附剂上的吸附等温线属于这种类型。

例如78

K时

N2

在活性炭上的吸附及水和苯蒸汽在分子筛上的吸附。§13.8固体表面的吸附2023/1/16(Ⅱ)

常称为S型等温线。吸附剂孔径大小不一,发生多分子层吸附。在对比压接近1时,发生毛细管凝聚现象。§13.8固体表面的吸附2023/1/16(Ⅲ)这种类型较少见。当吸附剂和吸附质相互作用很弱时会出现这种等温线。如352K时,Br2在硅胶上的吸附属于这种类型。§13.8固体表面的吸附2023/1/16(Ⅳ)多孔吸附剂发生多分子层吸附时会有这种等温线。在对比压较高时,有毛细凝聚现象。例如在323K时,苯在氧化铁凝胶上的吸附属于这种类型。§13.8固体表面的吸附2023/1/16(Ⅴ)发生多分子层吸附,有毛细凝聚现象。例如373K时,水汽在活性炭上的吸附属于这种类型。§13.8固体表面的吸附2023/1/161、Langmuir吸附等温式Langmuir吸附等温式描述了吸附量与被吸附蒸汽压力之间的定量关系。(1)吸附是单分子层的(2)固体表面是均匀的,被吸附分子之间无相互作用设:表面覆盖度q=V/Vm

Vm为吸满单分子层的体积则空白表面为(1-q)V为吸附体积§13.8固体表面的吸附吸附等温曲线两个重要假设:2023/1/16达到平衡时,吸附与脱附速率相等。吸附速率为脱附速率为令:

这公式称为

Langmuir吸附等温式,式中a称为吸附平衡常数(或吸附系数),它的大小代表了固体表面吸附气体能力的强弱程度。§13.8固体表面的吸附2023/1/16以q

对p

作图,得:Langmuir等温式的示意图1.当p很小,或吸附很弱,ap<<1,q=ap,q与p成线性关系。2.当p很大或吸附很强时,ap>>1,q=1,q与p无关,吸附已铺满单分子层。3.当压力适中,q∝pm,m介于0与1之间。§13.8固体表面的吸附2023/1/16m为吸附剂质量重排后可得:这是Langmuir吸附公式的又一表示形式。用实验数据,以p/V~p作图得一直线,从斜率和截距求出吸附系数a和铺满单分子层的气体体积Vm。将q=V/Vm代入Langmuir吸附公式

Vm是一个重要参数。从吸附质分子截面积Am,可计算吸附剂的总表面积S和比表面A。§13.8固体表面的吸附2023/1/16吸附系数随温度和吸附热的变化关系为Q为吸附热,取号惯例为放热吸附热为正值,吸热吸附热为负值。当吸附热为负值时,温度升高,吸附量下降对于一个吸附质分子吸附时解离成两个粒子的吸附达吸附平衡时§13.8固体表面的吸附2023/1/16或在压力很小时如果表示吸附时发生了解离§13.8固体表面的吸附2023/1/16当A和B两种粒子都被吸附时,A和B分子的吸附与解吸速率分别为:混合气体的Langmuir吸附等温式§13.8固体表面的吸附达吸附平衡时,ra=rd2023/1/16两式联立解得qA,qB分别为:§13.8固体表面的吸附气体B的存在可使气体A的吸附受到阻抑,反之亦然2023/1/16对多种气体混合吸附的Lngmuir吸附等温式为:

Lngmuir吸附等温式在吸附理论中起了一定的作用,但它的单分子层吸附、表面均匀等假设并不完全与事实相符,是吸附的理想情况。§13.8固体表面的吸附2023/1/16Freundlich

等温式有两种表示形式:q:吸附量,cm3/gk,n是与温度、系统有关的常数。x:吸附气体的质量m:吸附剂质量k’,n是与温度、系统有关的常数。

Freundlich吸附公式对q的适用范围比Langmuir公式要宽,适用于物理吸附、化学吸附和溶液吸附§13.8固体表面的吸附2023/1/16

CO在炭上的吸附等温线§13.8固体表面的吸附2023/1/16§13.8固体表面的吸附2023/1/16BET多层吸附公式由Brunauer-Emmett-Teller三人提出的多分子层吸附公式简称BET公式。他们接受了Langmuir理论中关于固体表面是均匀的观点,但他们认为吸附是多分子层的。当然第一层吸附与第二层吸附不同,因为相互作用的对象不同,因而吸附热也不同,第二层及以后各层的吸附热接近与凝聚热。在这个基础上他们导出了BET吸附二常数公式。§13.8固体表面的吸附2023/1/16式中两个常数为c和Vm,c是与吸附热有关的常数,Vm为铺满单分子层所需气体的体积。p和V分别为吸附时的压力和体积,ps是实验温度下吸附质的饱和蒸汽压。

BET公式主要应用于测定固体催化剂的比表面§13.8固体表面的吸附BET多层吸附公式2023/1/16为了使用方便,将二常数公式改写为:用实验数据 对 作图,得一条直线。从直线的斜率和截距可计算两个常数值c和Vm,从Vm可以计算吸附剂的比表面:Am是吸附质分子的截面积,要换算到标准状态(STP)。§13.8固体表面的吸附2023/1/16

二常数公式较常用,比压一般控制在0.05-0.35之间。

比压太低,建立不起多分子层物理吸附;

比压过高,容易发生毛细凝聚,使结果偏高。§13.8固体表面的吸附2023/1/16如果吸附层不是无限的,而是有一定的限制,例如在吸附剂孔道内,至多只能吸附n层,则BET公式修正为三常数公式:若n=1,为单分子层吸附,上式可以简化为Langmuir公式。若n=∞,(p/ps)∞→0,上式可转化为二常数公式三常数公式一般适用于比压在0.35~0.60之间的吸附。§13.8固体表面的吸附2023/1/16Tёмкин方程式(乔母金)式中是常数以作图,的一直线这个公式也只适用于覆盖率不大(或中等覆盖)的情况。在处理一些工业上的催化过程如合成氨过程、造气变换过程中,常使用到这个方程。§13.8固体表面的吸附2023/1/16三、吸附现象的本质——物理吸附和化学吸附物理吸附特点:1.吸附力是由固体和气体分子之间的vanderWaals引力产生的,一般比较弱。2.吸附热较小,接近于气体的液化热,一般在几个

kJ/mol以下。3.吸附无选择性,任何固体可以吸附任何气体,当然吸附量会有所不同。§13.8固体表面的吸附2023/1/164.吸附稳定性不高,吸附与解吸速率都很快5.吸附可以是单分子层的,但也可以是多分子层的6.吸附不需要活化能,吸附速率并不因温度的升高而变快。总之:物理吸附仅仅是一种物理作用,没有电子转移,没有化学键的生成与破坏,也没有原子重排等§13.8固体表面的吸附2023/1/16化学吸附特点:1.吸附力是由吸附剂与吸附质分子之间产生的化学键力,一般较强。吸附热较高,接近于化学反应热,一般在42kJ/mol以上。3.吸附有选择性,固体表面的活性位只吸附与之可发生反应的气体分子,如酸位吸附碱性分子,反之亦然。§13.8固体表面的吸附2023/1/164.吸附很稳定,一旦吸附,就不易解吸。5.吸附是单分子层的。6.吸附需要活化能,温度升高,吸附和解吸速率加快。总之:化学吸附相当与吸附剂表面分子与吸附质分子发生了化学反应,在红外、紫外-可见光谱中会出现新的特征吸收带。§13.8固体表面的吸附2023/1/16物理吸附和化学吸附可以相伴发生,所以常需要同时考虑两种吸附在整个吸附过程中的作用,有时温度可以改变吸附力的性质H2在Ni粉上的吸附等压线吸附现象的本质—

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论