版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
会计学1初三数学几何动点题及方法第1页/共19页【思路分析】解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意味着BM,MC以及DN,NC都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。第2页/共19页第3页/共19页第4页/共19页【思路分析】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D运动产生的变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。第5页/共19页【思路分析】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解。第6页/共19页【思路分析】这一问有点棘手,D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X。分类讨论之后利用相似三角形的比例关系即可求出CP.第7页/共19页ADCBPMQ60°第8页/共19页【思路分析】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。第二问和例1一样是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的。题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢?当然是利用角度咯.于是就有了思路.ADCBPMQ60°第9页/共19页【思路分析】第三问的条件又回归了当动点静止时的问题。由第二问所得的二次函数,很轻易就可以求出当X取对称轴的值时Y有最小值。接下来就变成了“给定PC=2,求△PQC形状”的问题了。由已知的BC=4,自然看出P是中点,于是问题轻松求解。ADCBPMQ60°第10页/共19页以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.第11页/共19页第12页/共19页【思路分析】这一题是一道典型的从特殊到一般的图形旋转题。从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。第二问将△BEF旋转45°之后,很多考生就想不到思路了。事实上,本题的核心条件就是G是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。连接AG之后,抛开其他条件,单看G点所在的四边形ADFE,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G点做AD,EF的垂线。于是两个全等的三角形出现了。第13页/共19页【思路分析】如果△BEF任意旋转,哪些量在变化,哪些量不变呢?在△BEF的旋转过程中,始终不变的依然是G点是FD的中点。可以延长一倍EG到H,从而构造一个和EFG全等的三角形,利用BE=EF这一条件将全等过渡。要想办法证明三角形ECH是一个等腰直角三角形,就需要证明三角形EBC和三角形CDH全等,利用角度变换关系就可以得证了。第14页/共19页第15页/共19页图1【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就是轴对称)也是一大热点。第一问给出比例为1,第二问比例为2,第三问比例任意,所以也是一道很明显的从一般到特殊的递进式题目。你需要仔细把握翻折过程中哪些条件发生了变化,哪些条件没有发生变化。一般说来,翻折中,角,边都是不变的,所以轴对称图形也意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系。尤其注意的是,本题中给定的比例都是有两重情况的,E在BC上和E在延长线上都是可能的,所以需要分类讨论,不要遗漏。第16页/共19页图2第17页/共19页【总结】通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考生拿到题以后不要慌张,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些不变的量。只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.总结这种问题的一般思路如下:第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。第三、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三寒假总结
- 二零二五年度抵冲货款跨境电商金融结算合同3篇
- 二零二五年度房屋租赁担保合同范本(含租赁合同登记备案)3篇
- Unit 6 My clothes,my style welcome to the unit 说课稿2024-2025学年牛津译林版英语七年级上册
- 浙江省金华市婺城区2024-2025学年九年级上学期期末数学试卷(含答案)
- 二零二五年度彩钢房租赁与临时办公解决方案协议3篇
- 2024-2025学年云南省昆明市官渡区八年级(上)期末英语试卷(含答案)
- 二零二五年度企业间电子合同范本及操作手册2篇
- Unit 3 The world meets China Project 说课稿 -2023-2024学年高二英语外研版(2019)选择性必修第四册
- Unit 5读写课第一课时说课稿 - 2024-2025学年外研版(2024)七年级英语上册
- 液化气供应站安全管理制度和营业制度
- 停车场施工施工组织设计方案
- GB/T 21385-2008金属密封球阀
- GB/T 18994-2003电子工业用气体高纯氯
- 超分子化学简介课件
- 文言文阅读训练:《三国志-武帝纪》(附答案解析与译文)
- (完整版)招聘面试方案设计与研究毕业论文设计
- 调休单、加班申请单
- 肉制品生产企业名录296家
- 规划设计收费标准
- 山区道路安全驾驶教案
评论
0/150
提交评论