2022年江苏省盐城市盐城中学数学九上期末教学质量检测试题含解析_第1页
2022年江苏省盐城市盐城中学数学九上期末教学质量检测试题含解析_第2页
2022年江苏省盐城市盐城中学数学九上期末教学质量检测试题含解析_第3页
2022年江苏省盐城市盐城中学数学九上期末教学质量检测试题含解析_第4页
2022年江苏省盐城市盐城中学数学九上期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根 B.有两个不相等的实数根C.有一个根是x=-1 D.有两个相等的实数根2.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.3.直线与抛物线只有一个交点,则的值为()A. B. C. D.4.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3) B.(1,3) C.(﹣1,3) D.(﹣1,﹣3)6.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE7.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.8.如图,四点在⊙上,.则的度数为()A. B. C. D.9.下列方程中,没有实数根的是()A. B. C. D.10.如图所示几何体的俯视图是()A. B. C. D.二、填空题(每小题3分,共24分)11.两个相似三角形的面积比为,其中较大的三角形的周长为,则较小的三角形的周长为__________.12.一元二次方程5x2﹣1=4x的一次项系数是______.13.已知实数m,n满足等式m2+2m﹣1=0,n2+2n﹣1=0,那么求的值是_____.14.如图,在由边长为1的小正方形组成的网格中.点A,B,C,D都在这些小正方形的格点上,AB、CD相交于点E,则sin∠AEC的值为_____.15.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了棵树苗,则可列出方程__________.16.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:抽取的毛绒玩具数2151111211511111115112111优等品的频数19479118446292113791846优等品的频率1.9511.9411.9111.9211.9241.9211.9191.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到17.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1.若△E1FA1∽△E1BF,则AD=.18.抛物线y=x2+3与y轴的交点坐标为__________.三、解答题(共66分)19.(10分)已知的半径为,点到直线的距离为,且直线与相切,若,分别是方程的两个根,求的值.20.(6分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.21.(6分)计算:2|1﹣sin60°|+tan45°22.(8分)(1)计算:.(2)解方程:.23.(8分)先化简,再求值:(1+)÷,其中a=1.24.(8分)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.25.(10分)如图,在中,点,分别在,上,,,.求四边形的面积.26.(10分)先化简,再求值:已知,,求的值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【详解】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,

∴(-1)2-4+c=0,

解得:c=3,∵所抄的c比原方程的c值小2.

故原方程中c=5,即方程为:x2+4x+5=0

则b2-4ac=16-4×1×5=-4<0,

则原方程的根的情况是不存在实数根.

故选:A.【点睛】此题主要考查了方程解的定义和根的判别式,利用有根必代的原则正确得出c的值是解题关键.2、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.3、D【分析】直线y=-4x+1与抛物线y=x2+2x+k只有一个交点,则把y=-4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【详解】根据题意得:x2+2x+k=-4x+1,

即x2+6x+(k-1)=0,

则△=36-4(k-1)=0,

解得:k=1.

故选:D.【点睛】本题考查了二次函数与一次函数的交点个数的判断,把一次函数代入二次函数的解析式,得到的关于x的方程中,判别式△>0,则两个函数有两个交点,若△=0,则只有一个交点,若△<0,则没有交点.4、C【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.5、D【解析】根据二次函数顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=﹣(x+1)2﹣3的顶点坐标是(﹣1,﹣3).故选:D.【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.6、D【解析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D错误.【详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.7、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C.【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.8、B【分析】连接BO,由可得,则,由圆周角定理,得,即可得到答案.【详解】解:如图,连接BO,则∵,∴,∴,∵,∴;故选:B.【点睛】本题考查了垂径定理,以及圆周角定理,解题的关键是正确作出辅助线,得到.9、D【分析】要判定所给方程根的情况,只要分别求出它们的判别式,然后根据判别式的正负情况即可作出判断.没有实数根的一元二次方程就是判别式的值小于0的方程.【详解】解:A、x2+x=0中,△=b2-4ac=1>0,有实数根;

B、x2-2=0中,△=b2-4ac=8>0,有实数根;

C、x2+x-1=0中,△=b2-4ac=5>0,有实数根;

D、x2-x+1=0中,△=b2-4ac=-3,没有实数根.

故选D.【点睛】本题考查一元二次方程根判别式△:即(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10、B【解析】注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.再对选项进行分析即可得到答案.【详解】根据俯视图的特征,应选B.故选:B.【点睛】本题考查了几何体的三视图,正确理解主视图与左视图以及俯视图的特征是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三角形的周长为∴较小的三角形的周长为故答案为:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.12、-4【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:∵5x2﹣1=4x,方程整理得:5x2﹣4x﹣1=0,则一次项系数是﹣4,故答案为:﹣4【点睛】本题考查了一元二次方程的一般形式,解答本题要通过移项,转化为一般形式,注意移项时符号的变化.13、1或﹣2【分析】分两种情况讨论:①当m≠n时,根据根与系数的关系即可求出答案;②当m=n时,直接得出答案.【详解】由题意可知:m、n是方程x1+1x﹣1=0的两根,分两种情况讨论:①当m≠n时,由根与系数的关系得:m+n=﹣1,mn=﹣1,∴原式2,②当m=n时,原式=1+1=1.综上所述:的值是1或﹣2.故答案为:1或﹣2.【点睛】本题考查了构造一元二次方程求代数式的值,解答本题的关键是熟练运用根与系数的关系,本题属于中等题型.14、【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=,由AC∥BD可得△ACE∽△BDE,∴,∴CE=CD=,在Rt△ECF中,sin∠AEC=,故答案为:.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.15、【分析】根据“总售价=每棵的售价×棵数”列方程即可.【详解】解:根据题意可得:故答案为:.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.16、1.92【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.【详解】观察可知优等品的频率在1.92左右,所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,故答案为:1.92.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.17、3.2.【详解】解:∵∠ACB=90°,AB=20,BC=6,∴.设AD=2x,∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为A2,点E的对应点为E2,∴AE=DE=DE2=A2E2=x.∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD.∴AD:AC=DF:BC,即2x:8=DF:6,解得DF=2.5x.在Rt△DE2F中,E2F2=DF2+DE22=3.25x2,又∵BE2=AB-AE2=20-3x,△E2FA2∽△E2BF,∴E2F:A2E2=BE2:E2F,即E2F2=A2E2•BE2.∴,解得x=2.6或x=0(舍去).∴AD的长为2×2.6=3.2.18、(0,3)【分析】由于抛物线与y轴的交点的横坐标为0,代入解析式即可求出纵坐标.【详解】解:当x=0时,y=3,则抛物线y=x2+3与y轴交点的坐标为(0,3),故答案为(0,3).【点睛】此题主要考查了抛物线与坐标轴的交点坐标与解析式的关系,利用解析式中自变量为0即可求出与y轴交点的坐标.三、解答题(共66分)19、【分析】根据直线与圆相切的条件得,再根据一元二次方程根的判别式列出方程即得.【详解】∵由题意可知.∴方程的两根相等∴解得:.【点睛】本题考查了直线与圆相切的条件及一元二次方程根的判别式,解题关键是熟知直线与圆相切的条件是圆心到直线的距离等于圆的半径,判别式时,一元二次方程有两个相等实数根.20、(1);(2);(3)是,【分析】(1)若,则,代入数值即可求得CD,从而求得的半径.(2)当与相切时,则CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的长,过P点作PE⊥AO于E点,再利用△CPE∽△CAD,得出比例式求得P点的坐标,即可求得△POB的面积.(3)①若与AB有一个交点,则与AB相切,由(2)可得PD⊥AB,PD=,则②若与AB有两个交点,设另一个交点为F,连接CF,则∠CFD=90°,由(2)可得CF=3,过P点作PG⊥AB于G点,则DG=,PG为△DCF的中位线,PG=,则,综上所述,△PAB的面积是定值,为.【详解】(1)根据题意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半径为(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,当与相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO∴△ACD∽△ABO∴,即∴CD=3,AD=4∵CD为圆P的直径∴CP=过P点作PE⊥AO于E点,则∠PEC=∠ADC=90°,∠PCE=∠ACD∴△CPE∽△CAD∴即∴CE=∴OE=故P点的纵坐标为∴△POB的面积=(3)①若与AB有一个交点,则与AB相切,由(2)可得PD⊥AB,PD=,则②若与AB有两个交点,设另一个交点为F,连接CF,则∠CFD=90°,由(2)可得CF=3,过P点作PG⊥AB于G点,则DG=,PG为△DCF的中位线,PG=,则.综上所述,△PAB的面积是定值,为.【点睛】本题考查的是圆及相似三角形的综合应用,熟练的掌握直线与圆的位置关系,相似三角形的判定是关键.21、2+2【解析】先代入特殊角三角函数值,再根据实数的运算,可得答案.【详解】解:2|1﹣sin60°|+tan=2(1﹣32)+=2﹣3=2﹣3=2+2.【点睛】本题考查了特殊角三角函数值、实数的混合运算;熟记特殊角三角函数值是解题关键.22、(1)5;(2)【分析】(1)按顺序先分别进行绝对值化简,0次幂运算,代入特殊角的三角函数值,进行立方根运算,然后再按运算顺序进行计算即可.(2)根据化简方程,从而求得方程的解.【详解】(1)(2)解得,【点睛】本题考查了实数的混合运算以及一元二次方程的解法,掌握实数的混合运算法则以及一元二次方程化简运算方法是解题的关键.23、化简为,值为【分析】先将分式化简,再把值代入计算即可.【详解】原式==,当a=1时,原式=.【点睛】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论