版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.322.下列手机手势解锁图案中,是中心对称图形的是(
)A. B. C. D.3.如图,从半径为5的⊙O外一点P引圆的两条切线PA,PB(A,B为切点),若∠APB=60°,则四边形OAPB的周长等于()A.30 B.40 C. D.4.对于函数,下列结论错误的是()A.图象顶点是 B.图象开口向上C.图象关于直线对称 D.图象最大值为﹣95.反比例函数(x<0)如图所示,则矩形OAPB的面积是()A.-4 B.-2 C.2 D.46.等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数 C.反比例函数 D.二次函数7.计算=()A. B. C. D.8.若反比例函数y=图象经过点(5,-1),该函数图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限9.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是A.180个,160个 B.170个,160个C.170个,180个 D.160个,200个10.如果点与点关于原点对称,则()A.8 B.2 C. D.11.下列四个几何体中,主视图为圆的是()A. B. C. D.12.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.
或
B.
或
C.
或D.二、填空题(每题4分,共24分)13.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.14.如图,分别以四边形ABCD的各顶点为圆心,以1长为半径画弧所截的阴影部分的面积的和是________.15.如图,边长为4的正六边形内接于,则的内接正三角形的边长为______________.16.已知二次函数,与的部分对应值如下表所示:…-101234……61-2-3-2m…下面有四个论断:①抛物线的顶点为;②;③关于的方程的解为;④.其中,正确的有___________________.17.已知反比例函数的图象经过点,则这个函数的表达式为__________.18.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).三、解答题(共78分)19.(8分)某活动小组对函数的图象性质进行探究,请你也来参与(1)自变量的取值范围是______;(2)表中列出了、的一些对应值,则______;(3)依据表中数据画出了函数图象的一部分,请你把函数图象补充完整;01233003(4)就图象说明,当方程共有4个实数根时,的取值范围是______.20.(8分)解方程:4x2﹣8x+3=1.21.(8分)在一个不透明的口袋里,装有若干个完全相同的A、B、C三种球,其中A球x个,B球x个,C球(x+1)个.若从中任意摸出一个球是A球的概率为0.1.(1)这个袋中A、B、C三种球各多少个?(2)若小明从口袋中随机模出1个球后不放回,再随机摸出1个.请你用画树状图的方法求小明摸到1个A球和1个C球的概率.22.(10分)已知y与x成反比例,则其函数图象与直线相交于一点A.(1)求反比例函数的表达式;(2)直接写出反比例函数图象与直线y=kx的另一个交点坐标;(3)写出反比例函数值不小于正比例函数值时的x的取值范围.23.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;(2)如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?24.(10分)如图,是的直径,直线与相切于点.过点作的垂线,垂足为,线段与相交于点.(1)求证:是的平分线;(2)若,求的长.25.(12分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.26.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.2、B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、D【分析】连接OP,根据切线长定理得到PA=PB,再得出∠OPA=∠OPB=30°,根据含30°直角三角形的性质以及勾股定理求出PB,计算即可.【详解】解:连接OP,∵PA,PB是圆的两条切线,∴PA=PB,OA⊥PA,OB⊥PB,又OA=OB,OP=OP,∴△OAP≌△OBP(SSS),∴∠OPA=∠OPB=30°,∴OP=2OB=10,∴PB==5=PA,∴四边形OAPB的周长=5+5+5+5=10(+1),故选:D.【点睛】本题考查的是切线的性质、切线长定理、勾股定理以及全等三角形的性质等知识,作出辅助线构造直角三角形是解题的关键.4、D【分析】根据函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,本题得以解决.【详解】解:A.∵函数y=(x+2)2-9,∴该函数图象的顶点坐标是(-2,-9),故选项A正确;B.a=1>0,该函数图象开口向上,故选项B正确;C.∵函数y=(x+2)2-9,∴该函数图象关于直线x=-2对称,故选项C正确;D.当x=-2时,该函数取得最小值y=-9,故选项D错误;故选:D.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.5、D【分析】根据反比例函数的比例系数的几何意义:反比例函数图象上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|解答即可.【详解】∵点P在反比例函数(x<0)的图象上,∴S矩形OAPB=|-4|=4,故选:D.【点睛】本题主要考查反比例函数的比例系数的几何意义,掌握反比例函数上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|是关键.6、B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.7、C【解析】分析:分子根据合并同类项计算,分母根据同底数幂的乘法计算.详解:原式=.故选C.点睛:本题考查了合并同类项和同底数幂的乘法计算,合并同类项的方法是系数相加,字母和字母的指数不变;同底数的幂相乘,底数不变,把指数相加.8、D【解析】∵反比例函数y=的图象经过点(5,-1),
∴k=5×(-1)=-5<0,
∴该函数图象在第二、四象限.
故选D.9、B【解析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.10、C【分析】根据两个点关于原点对称时,它们横坐标对应的符号、纵坐标对应的符号分别相反,可直接得到m=3,n=-5进而得到答案.【详解】解:∵点A(3,n)与点B(-m,5)关于原点对称,
∴m=3,n=-5,
∴m+n=-2,
故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.11、C【分析】首先依次判断每个几何体的主视图,然后即可得到答案.【详解】解:A、主视图是矩形,B、主视图是三角形,C、主视图为圆,D、主视图是正方形,故选:C.【点睛】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.12、B【解析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:故选B.点睛:二次函数二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.二、填空题(每题4分,共24分)13、3000(1+x)2=1【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:
3000(1+x)2=1,
故答案为:3000(1+x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.14、【分析】根据四边形内角和定理得图中四个扇形正好构成一个半径为1的圆,因此其面积之和就是圆的面积.【详解】解:∵图中四个扇形的圆心角的度数之和为四边形的四个内角的和,且四边形内角和为360°,∴图中四个扇形构成了半径为1的圆,∴其面积为:πr2=π×12=π.故答案为:π.【点睛】此题主要考查了四边形内角和定理,扇形的面积计算,得出图中阴影部分面积之和是半径为1的圆的面积是解题的关键.15、【分析】解:如图,连接OA、OB,易得△AOB是等边三角形,从而可得OA=AB=4,再过点O作OM⊥AE于点M,则∠OAM=30°,AM=ME,然后解直角△AOM求得AM的长,进而可得答案.【详解】解:如图,连接OA、OB,则∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=AB=4,过点O作OM⊥AE于点M,则∠OAM=30°,AM=ME,在直角△AOM中,,∴AE=2AM=.故答案为:.【点睛】本题考查了正多边形和圆,作辅助线构造直角三角形、利用解直角三角形的知识求解是解题关键.16、①③.【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,其中,正确的有.①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.17、【分析】把点的坐标代入根据待定系数法即可得解.【详解】解:∵反比例函数y=经过点M(-3,2),
∴2=,
解得k=-6,
所以,反比例函数表达式为y=.
故答案为:y=.【点睛】本题考查了待定系数法求反比例函数解析式,是求函数解析式常用的方法,需要熟练掌握并灵活运用.18、【解析】试题分析:将左下阴影部分对称移到右上角,则阴影部分面积的和为一个900角的扇形面积与一个450角的扇形面积的和:.三、解答题(共78分)19、(1)全体实数;(2)1;(3)见解析;(4).【分析】(1)自变量没有限制,故自变量取值范围是全体实数;(2)把x=-2代入函数解释式即可得m的值;(3)描点、连线即可得到函数的图象;(4)根据函数的图象即可得到a的取值范围是-1<a<1.【详解】(1)自变量没有限制,故自变量取值范围是全体实数;(2)当x=-2时,∴m=1(3)如图所示(4)当方程共有4个实数根时,y轴左右两边应该都有2个交点,也就是图象x轴下半部分,此时-1<a<1;故答案为:(1)全体实数;(2)1;(3)见解析;(4).【点睛】本题考查了二次函数的图象和性质,正确的识别图象是解题的关键.20、【解析】方程左边分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解.【详解】分解因式得:(2x-3)(2x-1)=1,可得2x-3=1或2x-1=1,解得:x1=,x2=.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.21、(1)这个袋中A、B、C三种球分别为1个、1个、2个;(2)【分析】(1)由题意列方程,解方程即可;(2)首先画树状图,由概率公式即可得出答案.【详解】解:由题意得:[x+x+(x+1)]=x,解得:x=1,∴x+1=2,答:这个袋中A、B、C三种球分别为1个、1个、2个;(2)由题意,画树状图如图所示共有12个等可能的结果,摸到1个A球和1个C球的结果有4个,∴摸到1个A球和1个C球的概率为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.22、(1)y=;见详解;(2)另一个交点的坐标是;见详解;(1)0<x≤1或x≤-1.【分析】(1)根据题意可直接求出反比例函数表达式;(2)由(1)及一次函数表达式联立方程组求解即可;(1)根据反比例函数与一次函数的不等关系可直接求得.【详解】解:(1)设反比例函数表达式为,由题意得:把A代入得k=1,反比例函数的表达式为:y=;(2)由(1)得:把A代入,得k=1,,,解得,另一个交点的坐标是;(1)因为反比例函数值不小于正比例函数值,所以0<x≤1或x≤-1.【点睛】本题主要考查反比例函数与一次函数的综合,关键是根据题意得到两个函数表达式.23、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x=7,则P(和为9)=≠,所以x的值不能为7.【点睛】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.24、(1)见解析;(2)【分析】(1)连接OC,可证得OC∥AD,根据平行线性质及等腰三角形性质,可得∠DAC=∠CAO,即得AC平分∠DAB;(2)连接,连接交于点,通过构造直角三角形,利用勾股定理和相似三角形求得,再求得,即可求得答案.【详解】(1)证明:如图,连接,∵与相切于点,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴是的平分线;(2)解:如图,连接,连接交于点,∵是的直径,∴,∵,∴,∵,∴,∴,为线段中点,∵,,∴,∴,即:,∴,∵,∴,∴,∵为直径中点,为线段中点,∴.【点睛】本题考查了切线的性质、角平分线的性质、相似三角形的判定、勾股定理、三角形中位线的性质等多方面的知识,是一道综合题型,考查学生各知识点的综合运用能力.25、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度临时用电安全设施维护保养合同文本2篇
- 2025年度产品代理合同:智能家电全系列产品代理权转让
- 2025版内蒙古自治区农牧厅农业产业链延伸与价值链提升合同4篇
- 二零二五年度临时用电安全培训服务合同范本
- 2025年度食品添加剂研发项目配料保密合同范本
- 2025年度苗木种植项目招投标合同4篇
- 二零二五年度家电品牌代言合同标准范本
- 二零二五年度某某学校校园内电梯维修保养服务合同4篇
- 《短视频编剧:选题构想+脚本制作+剧本策划+镜头拍摄》课件 第5、6章 了解剧本:创作优剧本的基础、剧本编写:创作优的故事情节
- 2025年度钢材深加工项目运输及安装合同2篇
- 铜矿成矿作用与地质环境分析
- 30题纪检监察位岗位常见面试问题含HR问题考察点及参考回答
- 高考作文复习任务驱动型作文的审题立意课件73张
- 询价函模板(非常详尽)
- 《AI营销画布:数字化营销的落地与实战》
- 麻醉药品、精神药品、放射性药品、医疗用毒性药品及药品类易制毒化学品等特殊管理药品的使用与管理规章制度
- 一个28岁的漂亮小媳妇在某公司打工-被老板看上之后
- 乘务培训4有限时间水上迫降
- 2023年低年级写话教学评语方法(五篇)
- DB22T 1655-2012结直肠外科术前肠道准备技术要求
- GB/T 16474-2011变形铝及铝合金牌号表示方法
评论
0/150
提交评论