电磁感应专题十_第1页
电磁感应专题十_第2页
电磁感应专题十_第3页
电磁感应专题十_第4页
电磁感应专题十_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题十考纲解读考点内容要求命题规律复习策略考察频次题型分值电磁感应现象磁通量楞次定律ⅠⅠⅡ15新课标1卷19;2卷18题14新课标1卷14题选择或计算题6分-18分(1)掌握公式,理解各物理量,各定则、规律的区别;(2)熟练掌握滑轨类问题、线框穿过有界匀强磁场的问题、电磁感应的图象问题、电磁感应的能量问题的解决方法;(3)提高应用数学方法解决物理问题的能力法拉第电磁感应定律Ⅱ15新课标2卷15题14新课标1卷18题自感、涡流Ⅰ知识整合模块一、电磁感应现象楞次定律知识点一电磁感应现象的判断1.磁通量(1)定义:在匀强磁场中,磁感应强度B与垂直于磁场方向的面积的乘积.(2)公式:Φ=BS.适用条件:①匀强磁场.②S为垂直磁场的有效面积.(3)磁通量是标量(填“标量”或“矢量”).(4)磁通量的意义:①磁通量可以理解为穿过某一面积的磁感线的条数.②同一线圈平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量为零;当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为零.2.电磁感应现象(1)电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.(2)产生感应电流的条件:穿过闭合回路的磁通量发生变化.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.(3)电磁感应现象中的能量转化:发生电磁感应现象时,机械能或其他形式的能转化为电能,该过程遵循能量守恒定律.知识点二楞次定律的应用1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2.楞次定律中“阻碍”的含义eq\x(谁阻碍谁)→eq\x(感应电流的磁场阻碍引起感应电流的磁场(原磁场)的磁通量的变化)eq\x(阻碍什么)→eq\x(阻碍的是磁通量的变化,而不是阻碍磁通量本身)eq\x(如何阻碍)→当磁通量增加时,感应电流的磁场方向与原磁场的方向相反;当磁通量减少时,感应电流的磁场方向与原磁场的方向相同,即“增反减同”eq\x(阻碍效果)→eq\x(阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行)3.楞次定律的使用步骤4.楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”.知识点三三定则一定律的综合应用1.三定则一定律的比较基本现象应用的定则或定律运动电荷、电流产生磁场安培定则磁场对运动电荷、电流有作用力左手定则电磁感应部分导体做切割磁感线运动右手定则闭合回路磁通量变化楞次定律2.应用技巧无论是“安培力”还是“洛伦兹力”,只要是“力”都用左手判断.“电生磁”或“磁生电”均用右手判断.模块二、法拉第电磁感应定律知识点一法拉第电磁感应定律的应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=eq\f(E,R+r).2.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率eq\f(ΔΦ,Δt)和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B的变化引起时,则E=neq\f(ΔB·S,Δt);当ΔΦ仅由S的变化引起时,则E=neq\f(B·ΔS,Δt);当ΔΦ由B、S的变化同时引起时,则E=neq\f(B2S2-B1S1,Δt)≠neq\f(ΔB·ΔS,Δt).3.磁通量的变化率eq\f(ΔΦ,Δt)是Φ-t图象上某点切线的斜率.4.法拉第电磁感应定律解题技巧(1)公式E=neq\f(ΔΦ,Δt)是求解回路某段时间内平均电动势的最佳选择.(2)用公式E=nSeq\f(ΔB,Δt)求感应电动势时,S为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q仅与n、ΔΦ和回路总电阻R总有关,与时间长短无关.推导如下:q=eq\x\to(I)Δt=eq\f(nΔΦ,ΔtR总)·Δt=eq\f(nΔΦ,R总).知识点二导体切割磁感线产生感应电动势的计算1.公式E=Blv的使用条件(1)匀强磁场.(2)B、l、v三者相互垂直.(3)如不垂直,用公式E=Blvsinθ求解,θ为B与v方向间的夹角.2.“瞬时性”的理解(1)若v为瞬时速度,则E为瞬时感应电动势.(2)若v为平均速度,则E为平均感应电动势.3.切割的“有效长度”公式中的l为有效切割长度,即导体在与v垂直的方向上的投影长度.图4中有效长度分别为:图4甲图:l=eq\x\to(cd)sinβ;乙图:沿v1方向运动时,l=eq\x\to(MN);沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=eq\r(2)R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.“相对性”的理解E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.知识点三、自感现象的理解1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E=Leq\f(ΔI,Δt).(3)自感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.2.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.线圈就相当于电源,它提供的电流从原来的IL逐渐变小.3.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.4.断电自感中,灯泡是否闪亮问题(1)通过灯泡的自感电流大于原电流时,灯泡闪亮.(2)通过灯泡的自感电流小于或等于原电流时,灯泡不会闪亮.随堂练习微专题一1.[磁通量的计算]如图2所示,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现若使矩形框以左边的一条边为轴转到竖直的虚线位置,则此过程中磁通量的改变量的大小是()图2A.eq\f(\r(3)-1,2)BSB.eq\f(\r(3)+1,2)NBSC.eq\f(\r(3)+1,2)BSD.eq\f(\r(3)-1,2)NBS2.[电磁感应现象的判断]现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关按如图3所示连接.下列说法中正确的是()图3A.开关闭合后,线圈A插入或拔出都会引起电流计指针偏转B.线圈A插入线圈B中后,开关闭合和断开的瞬间,电流计指针均不会偏转C.开关闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.开关闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转3.[电磁感应现象的判断]如图4所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是()图4A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)4.[楞次定律的应用]如图6所示,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是()图6A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力FN将增大5.[楞次定律的应用]如图7所示,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a()图7A.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转6.[多定则的综合应用]两根相互平行的金属导轨水平放置于图9所示的匀强磁场中,在导轨上接触良好的导体棒AB和CD可以自由滑动.当AB在外力F作用下向右运动时,下列说法中正确的是()图9A.导体棒CD内有电流通过,方向是D→CB.导体棒CD内有电流通过,方向是C→DC.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向左7.[三定则一定律的综合应用]如图10所示的电路中,若放在水平光滑金属导轨上的ab棒突然向右移动,这可能发生在()图10A.闭合开关S的瞬间B.断开开关S的瞬间C.闭合开关S后,减小滑动变阻器R的阻值时D.闭合开关S后,增大滑动变阻器R的阻值时8.[三定则一定律的综合应用]如图11所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引()图11A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动9(多选)如图8所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动。则PQ所做的运动可能是()图8A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动10.(多选)如图9所示,在匀强磁场中放有平行金属导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在金属导轨上的金属棒ab的运动情况是(两线圈共面放置)()图9A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动微专题二1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是()A.感应电动势的大小与线圈的匝数无关B.穿过线圈的磁通量越大,感应电动势越大C.穿过线圈的磁通量变化越快,感应电动势越大D.感应电流产生的磁场方向与原磁场方向始终相同2.[法拉第电磁感应定律的应用]如图3甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示.下列说法中正确的是()图3A.线圈中的感应电流方向为顺时针方向B.电阻R两端的电压随时间均匀增大C.线圈电阻r消耗的功率为4×10-4WD.前4s内通过R的电荷量为4×10-4C3.[对E=Blv的考查]如图6所示,水平放置的粗糙U形框架上接一个阻值为R0的电阻,放在垂直纸面向里、磁感应强度大小为B的匀强磁场中,一个半径为L、质量为m的半圆形硬导体AC在水平向右的恒定拉力F作用下,由静止开始运动距离d后速度达到v,半圆形硬导体AC的电阻为r,其余电阻不计.下列说法正确的是()图6A.此时AC两端电压为UAC=2BLvB.此时AC两端电压为UAC=eq\f(2BLvR0,R0+r)C.此过程中电路产生的电热为Q=Fd-eq\f(1,2)mv2D.此过程中通过电阻R0的电荷量为q=eq\f(2BLd,R0+r)4.[导体切割磁感线产生感应电动势问题]如图7所示,足够长的“U”形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度大小为B的匀强磁场垂直,导轨电阻不计.金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,ab棒接入电路的部分的电阻为R,当流过ab棒某一横截面的电荷量为q时,棒的速度大小为v,则金属棒ab在这一过程中()图7A.a点的电势高于b点的电势B.ab棒中产生的焦耳热小于ab棒重力势能的减少量C.下滑的位移大小为eq\f(qR,BL)D.受到的最大安培力大小为eq\f(B2L2v,R)sinθ5.如图2所示,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E1;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E1∶E2分别为()图2A.c→a,2∶1B.a→c,2∶1C.a→c,1∶2D.c→a,1∶26.有一个匀强磁场边界是EF,在EF右侧无磁场,左侧是匀强磁场区域,如图3甲所示。现有一个闭合的金属线框以恒定速度从EF右侧水平进入匀强磁场区域。线框中的电流随时间变化的i-t图象如图乙所示,则可能的线框是下列四个选项中的()图37.[对自感的考查]如图9(a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯泡A的电阻,接通S,电路达到稳定后,灯泡A发光,则()图9A.在电路(a)中,断开S,A将渐渐变暗B.在电路(a)中,断开S,A将先变得更亮,然后渐渐变暗C.在电路(b)中,断开S,A将渐渐变暗D.在电路(b)中,断开S,A将先变得更亮,然后渐渐变暗8.[对通电自感和断电自感的考查]如图10所示,线圈L的自感系数很大,且其直流电阻可以忽略不计,L1、L2是两个完全相同的小灯泡,开关S闭合和断开的过程中,灯L1、L2的亮度变化情况是(灯丝不会断)()图10A.S闭合,L1亮度不变,L2亮度逐渐变亮,最后两灯一样亮;S断开,L2立即熄灭,L1逐渐变暗B.S闭合,L1亮度不变,L2很亮;S断开,L1、L2立即熄灭C.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2亮度不变;S断开,L2立即熄灭,L1亮一下再熄灭D.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮;S断开,L2立即熄灭,L1亮一下再熄灭9.磁场在xOy平面内的分布如图14所示,其磁感应强度的大小均为B0,方向垂直于xOy平面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为L0,整个磁场以速度v沿x轴正方向匀速运动.若在磁场所在区间内放置一由n匝线圈组成的矩形线框abcd,线框的bc=LB、ab=L,LB略大于L0,总电阻为R,线框始终保持静止.求:图14(1)线框中产生的总电动势大小和导线中的电流大小;(2)线框所受安培力的大小和方向.10如图3甲所示,电路的左侧是一个电容为C的电容器,电路的右侧是一个环形导体,环形导体所围的面积为S.在环形导体中有一垂直纸面向里的匀强磁场,磁感应强度的大小随时间变化的规律如图乙所示.则在0~t0时间内,电容器()图3A.上极板带正电,所带电荷量为eq\f(CS(B2-B1),t0)B.上极板带正电,所带电荷量为eq\f(C(B2-B1),t0)C.上极板带负电,所带电荷量为eq\f(CS(B2-B1),t0)D.上极板带负电,所带电荷量为eq\f(C(B2-B1),t0)高考题基础巩固1.(2014·新课标Ⅰ·14)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化2.(2013·新课标Ⅱ·19)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是()A.奥斯特在实验中观察到电流的磁效应,该效应揭示了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化3.(2014·广东·15)如图12所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置.小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块()图12A.在P和Q中都做自由落体运动B.在两个下落过程中的机械能都守恒C.在P中的下落时间比在Q中的长D.落至底部时在P中的速度比在Q中的大4(2013·海南·10)如图7所示,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内,在金属框接通逆时针方向电流的瞬间()图7A.两小线圈会有相互靠拢的趋势B.两小线圈会有相互远离的趋势C.两小线圈中感应电流都沿顺时针方向D.左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向5(2013·江苏·13)如图1所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直.已知线圈的匝数N=100,边长ab=1.0m、bc=0.5m,电阻r=2Ω.磁感应强度B在0~1s内从零均匀变化到0.2T.在1~5s内从0.2T均匀变化到-0.2T,取垂直纸面向里为磁场的正方向.求:图1(1)0.5s时线圈内感应电动势的大小E和感应电流的方向;(2)在1~5s内通过线圈的电荷量q;(3)在0~5s内线圈产生的焦耳热Q.6.[感应电动势大小的计算](2012·新课标全国·19)如图2,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率eq\f(ΔB,Δt)的大小应为()图2A.eq\f(4ωB0,π)B.eq\f(2ωB0,π)C.eq\f(ωB0,π)D.eq\f(ωB0,2π)7(2012·四川·20)半径为a、右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着垂直纸面向里的匀强磁场,磁感应强度为B.直杆在圆环上以速度v平行于直径CD向右做匀速直线运动,直杆始终有两点与圆环良好接触,从圆环中心O开始,直杆的位置由θ确定,如图5所示.则()图5A.θ=0时,直杆产生的电动势为2BavB.θ=eq\f(π,3)时,直杆产生的电动势为eq\r(3)BavC.θ=0时,直杆受的安培力大小为eq\f(2B2av,(π+2)R0)D.θ=eq\f(π,3)时,直杆受的安培力大小为eq\f(3B2av,(5π+3)R0)8.(2014·安徽·20)英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图11所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球,已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是()图11A.0B.eq\f(1,2)r2qkC.2πr2qkD.πr2qk9.(2014·江苏·1)如图12所示,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt时间内,磁感应强度的方向不变,大小由B均匀地增大到2B.在此过程中,线圈中产生的感应电动势为()A.eq\f(Ba2,2Δt)B.eq\f(nBa2,2Δt)C.eq\f(nBa2,Δt)D.eq\f(2nBa2,Δt)10.(2013·北京·17)如图13所示,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E1;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2.则通过电阻R的电流方向及E1与E2之比E1∶E2分别为()图13A.c→a,2∶1B.a→c,2∶1C.a→c,1∶2D.c→a,1∶2能力提升1.(2013·海南·6)如图4,水平桌面上固定有一半径为R的金属细圆环,环面水平,圆环每单位长度的电阻为r,空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向里;一长度为2R、电阻可忽略的导体棒置于圆环左侧并与环相切,切点为棒的中点.棒在拉力的作用下以恒定加速度a从静止开始向右运动,运动过程中棒与圆环接触良好.下列说法正确的是()图4A.拉力的大小在运动过程中保持不变B.棒通过整个圆环所用的时间为eq\r(\f(2R,a))C.棒经过环心时流过棒的电流为eq\f(B\r(2aR),πr)D.棒经过环心时所受安培力的大小为eq\f(8B2R\r(2aR),πr)2.(2013·天津·3)如图5所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则()图5A.Q1>Q2,q1=q2B.Q1>Q2,q1>q2C.Q1=Q2,q1=q2D.Q1=Q2,q1>q23(2013全国新课标I)、如图,在水平面(纸面)内有三根相同的均匀金属棒ab、Ac和MN其中ab、ac在a点接触,构成“v”字型导轨。空间存在垂直于纸面的均匀碰场。用力使MN向右匀速运动,从图示位置开始计时.运动中MN始终与bac的平分线垂直且和导轨保持良好接触。下列关于回路中电流i与时间t的关系图线.可能正确的是4(15新课标1卷)1824年,法国科学家阿拉果完成了著名的“圆盘实验”。实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。下列说法正确的是A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动5(2013山东理综).将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中。回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图像如图乙所示。用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图像是6(2013全国卷大纲版).纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直于纸面的匀强磁场,磁感应强度大小相等、方向相反,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论