版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知抛物线(其中是常数,)的顶点坐标为.有下列结论:①若,则;②若点与在该抛物线上,当时,则;③关于的一元二次方程有实数解.其中正确结论的个数是()A. B. C. D.2.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15 C.15,15.5 D.16,153.抛物线y=(x+1)2+2的顶点()A.(﹣1,2)B.(2,1)C.(1,2)D.(﹣1,﹣2)4.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于()A.20° B.30° C.40° D.50°5.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测.根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点” B.小亮:“中午12点”C.小刚:“下午5点” D.小红:“什么时间都行”6.如图,在4×4的正方形方格中,和的顶点都在边长为1的小正方形的格点上,则的值为()A. B. C. D.37.将二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,下列关于平移后所得抛物线的说法,正确的是()A.开口向下 B.经过点 C.与轴只有一个交点 D.对称轴是直线8.若将二次函数的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为()A. B.C. D.9.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.10.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.任意画一个三角形,其内角和是360°D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球11.的倒数是()A.1 B.2 C. D.12.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25° B.40° C.30° D.50°二、填空题(每题4分,共24分)13.二次函数的最小值是.14.如图,在中,平分交于点,垂足为点,则__________.15.如图所示平面直角坐标系中,点A,C分别在x轴和y轴上,点B在第一象限,BC=BA,∠ABC=90°,反比例函数y=.(x>0)的图象经过点B,若OB=2,则k的值为_____.16.如图,,,与交于点,则是相似三角形共有__________对.17.如图,正方形ABCO与正方形ADEF的顶点B、E在反比例函数的图象上,点A、C、D在坐标轴上,则点E的坐标是_____.18.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为_______________________三、解答题(共78分)19.(8分)学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程的两个根为,由根与系数的关系有,,由此就能快速求出,,···的值了.比如设是方程的两个根,则,,得.小亮的说法对吗?简要说明理由;写一个你最喜欢的元二次方程,并求出两根的平方和;已知是关于的方程的一个根,求方程的另一个根与的值.20.(8分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数的图象经过点P,求m的值.21.(8分)解方程:x(x﹣3)+6=2x.22.(10分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.23.(10分)如图所示,已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少;(2)求出该圆锥的底面半径是多少.24.(10分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.25.(12分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.26.解方程
参考答案一、选择题(每题4分,共48分)1、C【分析】利用二次函数的性质一一进行判断即可得出答案.【详解】解:①抛物线(其中是常数,)顶点坐标为,,,,∴c>>0.故①小题结论正确;②顶点坐标为,点关于抛物线的对称轴的对称点为点与在该抛物线上,,,,当时,随的增大而增大,故此小题结论正确;③把顶点坐标代入抛物线中,得,一元二次方程中,,关于的一元二次方程无实数解.故此小题错误.故选:C.【点睛】本题是一道关于二次函数的综合性题目,具有一定的难度,需要学生熟练掌握二次函数的性质并能够熟练运用.2、C【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.3、A【解析】由抛物线顶点坐标公式[]y=a(x﹣h)2+k中顶点坐标为(h,k)]进行求解.【详解】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选:A.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为直线x=h.4、A【解析】由性质性质得,∠D′=∠D=90°,∠4=α,由四边形内角和性质得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【详解】如图,因为四边形ABCD为矩形,所以∠B=∠D=∠BAD=90°,因为矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因为∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故选:A【点睛】本题考核知识点:旋转角.解题关键点:理解旋转的性质.5、C【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选C.本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.6、B【分析】根据勾股定理求出和的各边长,由三边对应成比例的两个三角形相似可得,所以可得,求值即可.【详解】解:由勾股定理,得,,,,,,,,,,.故选:B【点睛】本题考查了相似三角形的判定与性质及解直角三角形,灵活利用正方形方格的特点是解题的关键.7、C【分析】根据二次函数图象和性质以及二次函数的平移规律,逐一判断选项,即可得到答案.【详解】∵二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,∴平移后的二次函数解析式为:,∵2>0,∴抛物线开口向上,故A错误,∵,∴抛物线不经过点,故B错误,∵抛物线顶点坐标为:(2,0),且开口向上,∴抛物线与轴只有一个交点,故C正确,∵抛物线的对称轴为:直线x=2,∴D错误.故选C.【点睛】本题主要考查二次函数的图象和性质以及平移规律,掌握“左加右减,上加下减”是解题的关键.8、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.9、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可.【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B.【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.10、D【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【点睛】本题考查频率估算概率,关键在于通过图象得出有利信息.11、B【分析】根据特殊角的三角函数值即可求解.【详解】=故的倒数是2,故选B.【点睛】此题主要考查倒数,解题的关键是熟知特殊角的三角函数值.12、A【分析】根据DE∥OA证得∠AOD=50°即可得到答案.【详解】解:∵DE∥OA,∠D=50°,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:A.【点睛】此题考查平行线的性质,同弧所对的圆周角与圆心角的关系,利用平行线证得∠AOD=50°是解题的关键.二、填空题(每题4分,共24分)13、﹣1.【解析】试题分析:∵=,∵a=1>0,∴x=﹣2时,y有最小值=﹣1.故答案为﹣1.考点:二次函数的最值.14、【分析】首先解直角三角形得出BC,然后根据判定DE∥AC,再根据平行线分线段成比例即可得出,再利用角平分线的性质,得出CE=DE,然后构建方程,即可得出DE.【详解】∵∴又∵∴DE∥AC∴又∵CD平分∴∠ACD=∠BCD=∠CDE=45°∴CE=DE∴∴故答案为.【点睛】此题主要考查利用平行线分线段成比例的性质构建方程,即可解题.15、1【分析】作BD⊥x轴于D,BE⊥y轴于E,则四边形ODBE是矩形,利用AAS证得△ABD≌△CBE,即可证得BD=BE,然后根据勾股定理求得B的坐标,代入y=.(x>0)即可求得k的值.【详解】如图,作BD⊥x轴于D,BE⊥y轴于E,∴四边形ODBE是矩形,∴∠DBE=90°,∵∠ABC=90°,∴∠ABD=∠CBE,在△ABD和△CBE中∴△ABD≌△CBE(AAS),∴BE=BD,∴四边形ODBE是正方形,∵OB=2,根据勾股定理求得OD=BD=2,∴B(2,2),∵反比例函数y=(x>0)的图象经过点B,∴k=2×2=1,故答案为1.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形全等的判定和性质,求得B的坐标是解题的关键.16、6【分析】图中三角形有:△AEG,△ADC,△CFG,△CBA,因为,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中组合,据此可得出答案.【详解】图中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6个组合分别为:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.17、【分析】设点E的坐标为,根据正方形的性质得出点B的坐标,再将点E、B的坐标代入反比例函数解析式求解即可.【详解】设点E的坐标为,且由图可知则点B的坐标为将点E、B的坐标代入反比例函数解析式得:整理得:解得:或(不符合,舍去)故点E的坐标为.【点睛】本题考查了反比例函数的定义与性质,利用正方形的性质求出点B的坐标是解题关键.18、3【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【详解】根据题意可得:A点的坐标为(1,0),B点的坐标为(3,0),C点的坐标为(0,3),则AB=2,所以三角形的面积=2×3÷2=3.考点:二次函数与x轴、y轴的交点.三、解答题(共78分)19、(1)小亮的说法不对,理由见解析;(1)方程:,两根平方和为37;(3)c=1,另一根为.【分析】(1)一般情况下可以这样计算、x11+x11的值,但是若有一根为零时,就无法计算的值了;(1)写出一个有实数根的一元二次方程,根据,计算即可;(3)把代入原方程,求出c的值,再根据即可求出另一根的值.【详解】(1)小亮的说法不对.若有一根为零,就无法计算的值了,因为零作除数无意义.(1)所喜欢的一元二次方程.设方程的两个根分别是为,,,.又,∴;(3)把代入原方程,得:.解得:.∵,∴.【点睛】本题考查了根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1,x1x1,反过来也成立,即(x1+x1),x1x1.20、(1);(2).【分析】(1)已知A(2,0)an∠OAB==,可求得OB=1,所以B(0,1),设直线l的表达式为,用待定系数法即可求得直线l的表达式;(2)根据直线l上的点P位于y轴左侧,且到y轴的距离为1可得点P的横坐标为-1,代入一次函数的解析式求得点P的纵坐标,把点P的坐标代入反比例函数中,即可求得m的值.【详解】解:(1)∵A(2,0),∴OA=2∵tan∠OAB==∴OB=1∴B(0,1)设直线l的表达式为,则∴∴直线l的表达式为(2)∵点P到y轴的距离为1,且点P在y轴左侧,∴点P的横坐标为-1又∵点P在直线l上,∴点P的纵坐标为:∴点P的坐标是∵反比例函数的图象经过点P,∴∴【点睛】本题考查待定系数法求函数的解析式;一次函数与反比例函数的交点坐标.21、x1=2,x2=1.【分析】先去掉括号,再把移到等号的左边,再根据因式分解法即可求解.【详解】解:x(x﹣1)+6=2x,x2﹣1x+6﹣2x=0,x2﹣5x+6=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.【点睛】本题考查了解一元二次方程因式分解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.22、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,
(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【详解】解:(1)根据题意得:
k=-1×1=-4,
即反比例函数的解析式为,解得:
m=4,n=-1,
即点A(-1,4),点C(4,-1),
把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,
(1)把x=0代入y=-x+3得:y=3,
即点D(0,3),
点A到y轴的距离为1,点C到y轴的距离为4,
S△PAD=×PD×1=PD,
S△PCD=×PD×4=1PD,
S△PAC=S△PAD+S△PCD=PD=5,
PD=1,
∵点D(0,3),
∴点P的坐标为(0,1)或(0,5).【点睛】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.23、(1)11π;(1)1.【分析】(1)因为扇形的面积就是圆锥的侧面积,所以只要求出扇形面积即可;(1)因为扇形围成一个圆锥的侧面,圆锥的底面圆的周长是扇形的弧长,借助扇形弧长公式可以求出圆锥的底面半径.【详解】解:(1);(1)扇形的弧长=,圆锥的底面圆的周长=1πR=4π,解得:R=1;故圆锥的底面半径为1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.24、20.3108【分析】(1)先求出样本总数,进而可得出m、n的值;(2)根据(1)中n的值可得出,“乒乓球”所在的扇形的圆心角的度数;(3)依据求简单事件的概率即可求出.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 望向未来的职业愿景计划
- 财务风险评估与对策计划
- 如何实现仓库管理的精益化计划
- 团队建设活动方案计划
- 西华大学《计算物理基础》2022-2023学年第一学期期末试卷
- 西北大学《软件测试双语》2023-2024学年第一学期期末试卷
- 西安邮电大学《微型计算机原理与接口技术》2021-2022学年第一学期期末试卷
- 临床护理文书书写的基本要求
- 企业供应链管理论文
- 《中国环境法学》 课件 竺效 第6-13章 中国绿色低碳发展法-中国的全球环境治理概述
- 《护理伦理与法律法规》期末考试复习题库(含答案)
- 劳务支付合同范本
- TD/T 1044-2014 生产项目土地复垦验收规程(正式版)
- 起重(信号、司索工)安全技术交底记录
- 汽车维修厂服务方案(2篇)
- 食用菌栽培学智慧树知到期末考试答案章节答案2024年山东农业工程学院
- 第22章二次函数二次函数与不等式的关系课件人教版数学九年级上册
- 写作进阶之道智慧树知到期末考试答案章节答案2024年内蒙古大学
- 电大财务大数据分析编程作业3
- 洗衣机采购验收及安装调试方案
- 中华传统文化与人生修养智慧树知到期末考试答案2024年
评论
0/150
提交评论