版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上 B.直线y=﹣x上 C.x轴上 D.y轴上2.如图,△ABC中,点D为边BC的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.若m>1,n>1,则2S△AEF>S△ABD B.若m>1,n<1,则2S△AEF<S△ABDC.若m<1,n<1,则2S△AEF<S△ABD D.若m<1,n>1,则2S△AEF<S△ABD3.在中,,、的对边分别是、,且满足,则等于()A. B.2 C. D.4.已知△ABC∽△A1B1C1,若△ABC与△A1B1C1的相似比为3:2,则△ABC与△A1B1C1的周长之比是()A.2:3 B.9:4 C.3:2 D.4:95.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠06.计算,正确的结果是()A.2 B.3a C. D.7.下列各式计算正确的是()A. B. C. D.8.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口25万人,通过社会各界的努力,2019年底贫困人口减少至9万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意可列方程()A.25(1﹣2x)=9 B.C.9(1+2x)=25 D.9.如图点D、E分别在△ABC的两边BA、CA的延长线上,下列条件能判定ED∥BC的是().A.; B.;C.; D..10.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A. B. C. D.11.如图,在扇形纸片AOB中,OA=10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.12π B.11π C.10π D.10π+512.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(
)A.8S B.9S C.10S D.11S二、填空题(每题4分,共24分)13.如图,是的切线,为切点,,,点是上的一个动点,连结并延长,交的延长线于,则的最大值为_________
14.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)15.如图,抛物线交轴于点,交轴于点,在轴上方的抛物线上有两点,它们关于轴对称,点在轴左侧.于点,于点,四边形与四边形的面积分别为6和10,则与的面积之和为.16.若一元二次方程有两个不相等的实数根,则k的取值范围是.17.小明与父母国庆节从杭州乘动车回台州,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是_________.18.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.三、解答题(共78分)19.(8分)如图为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)在图中画一个以为一边的菱形,且菱形的面积等于1.(2)在图中画一个以为对角线的正方形,并直接写出正方形的面积.20.(8分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是1.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.21.(8分)如图,一个运动员推铅球,铅球在点A处出手,出手时球离地面m.铅球落地点在点B处,铅球运行中在运动员前4m处(即OC=4m)达到最高点,最高点D离地面3m.已知铅球经过的路线是抛物线,根据图示的平面直角坐标系,请你算出该运动员的成绩.22.(10分)综合与探究问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是,位置关系是.合作探究:(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.23.(10分)如图,抛物线y=x2+x﹣与x轴相交于A,B两点,顶点为P.(1)求点A,点B的坐标;(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.24.(10分)为了解九年级学生体育水平,学校对九年级全体学生进行了体育测试,并从甲、乙两班中各随机抽取名学生成绩(满分分)进行整理分析(成绩得分用表示,共分成四组:;,)下面给出了部分信息:甲班名学生体育成绩:乙班名学生体育成绩在组中的数据是:甲、乙两班被抽取学生体育成绩统计表平均数中位数众数方差甲班乙班根据以上信息,解答下列问题:,,;根据以上数据,你认为班(填“甲”或“乙”)体育水平更高,说明理由(两条理由):;.学校九年级学生共人,估计全年级体育成绩优秀的学生人数是多少?25.(12分)先化简,再求值:,其中x满足x2﹣4x+3=1.26.如图,矩形的两边的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,求反比例函数的表达式.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点2、D【分析】根据相似三角形的判定与性质,得出,,从而建立等式关系,得出,然后再逐一分析四个选项,即可得出正确答案.【详解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,∴△AEF∽△ABC,∴,∴,∴,∴∴当m=1,n=1,即当E为AB中点,D为BC中点时,,A.当m>1,n>1时,S△AEF与S△ABD同时增大,则或,即2或2>,故A错误;B.当m>1,n<1,S△AEF增大而S△ABD减小,则,即2,故B错误;C.m<1,n<1,S△AEF与S△ABD同时减小,则或,即2或2<,故C错误;D.m<1,n>1,S△AEF减小而S△ABD增大,则,即2<,故D正确.故选D.【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.3、B【分析】求出a=2b,根据锐角三角函数的定义得出tanA=,代入求出即可.【详解】解:a2-ab-2b2=0,
(a-2b)(a+b)=0,
则a=2b,a=-b(舍去),
则tanA==2,
故选:B.【点睛】本题考查了解二元二次方程和锐角三角函数的定义的应用,注意:tanA=.4、C【分析】直接利用相似三角形的性质求解.【详解】解:∵△ABC与△A1B1C1的相似比为3:1,∴△ABC与△A1B1C1的周长之比3:1.故选:C.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.5、C【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.6、D【分析】根据同底数幂除法法则即可解答.【详解】根据同底数幂除法法则(同底数幂相除,底数不变,指数相减)可得,a6÷a1=a6﹣1=a1.故选D.【点睛】本题考查了整式除法的基本运算,必须熟练掌握运算法则.7、D【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A.与不能合并,所以A选项错误;B.原式=,所以B选项错误;C.原式=6×3=18,所以C选项错误;D.原式所以D选正确.故选D.【点睛】考查二次根式的运算,熟练掌握二次根式加减乘除的运算法则是解题的关键.8、B【分析】根据2017年贫困人口数×(1-平均下降率为)2=2019年贫困人口数列方程即可.【详解】设年平均下降率为x,∵2017年底有贫困人口25万人,2019年底贫困人口减少至9万人,∴25(1-x)2=9,故选:B.【点睛】本题考查由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b(a<b);平均降低率问题,在理解的基础上,可归结为a(1-x)2=b(a>b).9、D【分析】根据选项选出能推出,推出或的即可判断.【详解】解:、∵,,不符合两边对应成比例及夹角相等的相似三角形判定定理.无法判断与相似,即不能推出,故本选项错误;、,,,,即不能推出,故本选项错误;、由可知,不能推出,即不能推出,即不能推出两直线平行,故本选项错误;、∵,,,,,,故本选项正确;故选:.【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似.10、B【分析】画树状图得出所有等可能结果,从找找到符合条件得结果数,在根据概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果,所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为.故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11、A【分析】点O所经过的路线是三段弧,一段是以点B为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB一样长的线段,最后一段是以点A为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O所经过的路线长=90π×10故选A.【点睛】解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.12、B【解析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.详解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中点,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.二、填空题(每题4分,共24分)13、【分析】根据题意可知当ED与相切时,EC最大,再利用△ECD∽△EBA,找到对应边的关系即可求解.【详解】解:如图,当CD⊥DE于点D时EC最大.∵CD⊥DE,是的切线∴∠EDC=∠EAB=90°又∵∠E=∠E∴△ECD∽△EBA∴∴则∵,,∠EAB=90°∴CD=AC=1在Rt△ABE中利用勾股定理得即则∴可化为,解得或(舍去)综上所述,的最大值为.【点睛】本题考查了切线和相似的性质,能通过切线的性质找到符合要求的点,再能想到相似得到对应边的关系是解答此题的关键.14、>【分析】直接将(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【详解】解:∵反比例函数y=﹣的图象上有两点(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15、1【分析】根据抛物线的对称性知:四边形ODBG的面积应该等于四边形ODEF的面积;由图知△ABG和△BCD的面积和是四边形ODBG与矩形OCBA的面积差,由此得解.【详解】解:由于抛物线的对称轴是y轴,根据抛物线的对称性知:S四边形ODEF=S四边形ODBG=10;∴S△ABG+S△BCD=S四边形ODBG-S四边形OABC=10-6=1.【点睛】本题考查抛物线的对称性,能够根据抛物线的对称性判断出四边形ODEF、四边形ODBG的面积关系是解答此题的关键.16、:k<1.【详解】∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.17、【分析】根据题意列树状图解答即可.【详解】由题意列树状图:他们的座位共有6种不同的位置关系,其中小明恰好坐在父母中间的2种,∴小明恰好坐在父母中间的概率=,故答案为:.【点睛】此题考查事件概率的计算,正确列树状图解决问题是解题的关键.18、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.三、解答题(共78分)19、(1)图见解析;(2)图见解析,2.【分析】(1)根据菱形面积公式可得,底边AB的高为4,结合AD=5即可得到点D的坐标,同理得到点C的坐标,连接A,C,D即可.(2)作线段EF的中线与网格交于G、H,且,依次连接E、G、F、H即可,利用正方形面积公式即可求得正方形的面积.【详解】解:(1)根据菱形面积公式可得,底边AB的高为4,结合AD=5即可得到点D的坐标,同理得到点C的坐标,连接A,C,D.如图所示.(2)作线段EF的中线与网格交于G、H,且,依次连接E、G、F、H即可,如图所示.正方形面积为2.【点睛】本题考查了网格作图的问题,掌握菱形的性质以及面积公式、正方形的性质以及面积公式、勾股定理是解题的关键.20、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把点A的横坐标代入一次函数解析式求出纵坐标,确定出点A的坐标,代入反比例解析式求出k的值即可;
(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.【详解】解:(1)令x=1,代入y=x﹣2,则y=1,∴A(1,1),∵点A(1,1)在双曲线y=(k≠2)上,∴k=1;(2)联立得:,解得或,即B(﹣1,﹣1),如图所示:当点M在N右边时,n的取值范围是n>1或﹣1<n<2.【点睛】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.21、10m.【解析】由题可知该抛物线的顶点为(4,3),则可设顶点式解析式,再代入已知点A(0,)求解出a值,最后再求解B点坐标即可.【详解】解:能.∵,,∴顶点坐标为,设,代入A点坐标(0,),得:,∴,∴,即,令,得,∴,(舍去).故该运动员的成绩为.【点睛】本题主要考察了二次函数在实际中的运用,根据题意选择顶点式解决实际问题.22、(1)FG=FH,FG⊥FH;(2)(1)中结论成立,证明见解析;(3)(1)中的结论成立,结论是FH=FG,FH⊥FG.理由见解析.【解析】试题分析:(1)证BE=AD,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;
(3)连接AD,BE,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)∵CE=CD,AC=BC,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,AC=BC,∴△ACD≌△BCE,∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠CXA=∠DXB,∴∴即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,FH⊥FG,结论是FH=FG,FH⊥FG点睛:三角形的中位线平行于第三边并且等于第三边的一半.23、(1)A(﹣3,0),B(1,0);(2)存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).【分析】(1)令y=0可求得相应方程的两根,则可求得A、B的坐标;(2)可先求得P点坐标,则可求得点E到AB的距离,可求得E点纵坐标,再代入抛物线解析式可求得E点坐标.【详解】(1)令y=0,则x2+x0,解得:x=﹣3或x=1,∴A(﹣3,0),B(1,0);(2)存在.理由如下:∵yx2+x(x+1)2﹣2,∴P(﹣1,﹣2).∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,①当点E在x轴下方时,则E与P重合,此时E(﹣1,﹣2);②当点E在x轴上方时,则可设E(a,2),∴a2+a2,解得:a=﹣1﹣2或a=﹣1+2,∴E(﹣1﹣2,2)或E(﹣1+2,2).综上所述:存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).【点睛】本题考查了二次函数的性质及与坐标轴的交点,分别求得A、B、P的坐标是解答本题的关键.24、(1);(2)甲,详见解析;(3)估计全年级体育成绩优秀的学生约有人【分析】(1)根据C组的人数求得C组所占百分比,从而计算D组所占百分比求a,根据中位数和众数的概念求出c、d;(2)根据平均数和中位数的性质解答;(3)用样本估计总体,计算得答案.【详解】解:(1)C组所占百分比:×100%=30%,1-10%-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 望向未来的职业愿景计划
- 财务风险评估与对策计划
- 如何实现仓库管理的精益化计划
- 团队建设活动方案计划
- 西华大学《计算物理基础》2022-2023学年第一学期期末试卷
- 西北大学《软件测试双语》2023-2024学年第一学期期末试卷
- 西安邮电大学《微型计算机原理与接口技术》2021-2022学年第一学期期末试卷
- 临床护理文书书写的基本要求
- 企业供应链管理论文
- 《中国环境法学》 课件 竺效 第6-13章 中国绿色低碳发展法-中国的全球环境治理概述
- 人教版初中八年级上册《信息技术》1.1认识flash和flash动画教学设计信息技术
- 2025年山东省春季高考模拟考试英语试卷试题(含答案+答题卡)
- 检验科降低检测报告超时率PDCA持续改进案例
- 买卖合同法律知识及风险防范培训课件
- 2023年辽宁省水资源管理集团有限责任公司招聘考试真题
- 2024重庆机场集团公开招聘57人高频考题难、易错点模拟试题(共500题)附带答案详解
- 人教版英语2024七年级上册全册单元测试卷
- 加油加气站 反恐防范重点目标档案 范例2024
- 第5课 推动高质量发展
- 2024年军队文职统一考试《专业科目》管理学真题及答案解析
- 一年级口算练习题一天50道
评论
0/150
提交评论