2022-2023学年长沙市重点中学八年级数学第一学期期末质量检测模拟试题含解析_第1页
2022-2023学年长沙市重点中学八年级数学第一学期期末质量检测模拟试题含解析_第2页
2022-2023学年长沙市重点中学八年级数学第一学期期末质量检测模拟试题含解析_第3页
2022-2023学年长沙市重点中学八年级数学第一学期期末质量检测模拟试题含解析_第4页
2022-2023学年长沙市重点中学八年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A. B. C. D.2.下列长度的三条线段,能构成直角三角形的是()A.8,9,10 B.1.5,5,2 C.6,8,10 D.20,21,323.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD4.已知A(1,﹣3),B(2,﹣2),现将线段AB平移至A1B1,如果A1(a,1),B1(5,b),那么ab的值是()A.32 B.16 C.5 D.45.下列各式由左边到右边的变形中,是分解因式的是A. B.C. D.6.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1 B.-1 C.-+1 D.--17.如图,在中,,,,边的垂直平分线交于点,交于点,那么的为()A.6 B.4 C.3 D.28.下列命题,假命题是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,另一组对边相等的四边形是平行四边形9.若4x2+kxy+9y2是一个完全平方式,则k的值是()A.12 B.72 C.±36 D.±1210.如图,于,于,若,平分,则下列结论:①;②;③;④,正确的有()个A. B. C. D.二、填空题(每小题3分,共24分)11.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为_________.12.若,,则=_____.13.如图,若和的面积分别为、,则_____(用“>”、“=”或“<”来连接).14.如图,在中,,,,分别以点,为圆心,大于的长为半径画弧,两弧交点分别为点,,过,两点作直线交于点,则的长是_______.15.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形.其中正确说法的是__________.(把你认为正确结论的序号都填上)16.如图,在平面直角坐标系中,,,点是第一象限内的点,且是以为直角边的等腰直角三角形,则点的坐标为__________.17.小李家离某书店6千米,他从家中出发步行到该书店,返回时由于步行速度比去时每小时慢了1千米,结果返回时多用了半小时.如果设小李去书店时的速度为每小时x千米,那么列出的方程是__________.18.如图,的内角平分线与的外角平分线相交于点,若,则____.三、解答题(共66分)19.(10分)如图:,,求证:.20.(6分)某中学为丰富综合实践活动,开设了四个实验室如下:A.物理;B.化学;C.信息;D.生物.为了解学生最喜欢哪个实验室,随机抽取了部分学生进行调查,每位被调查的学生都选择了一个自己最喜欢的实验室,调查后将调查结果绘制成了如图统计图,请根据统计图回答下列问题(1)求这次被调查的学生人数.(2)请将条形统计图补充完整.(3)求出扇形统计图中B对应的圆心角的度数.21.(6分)先化简再求值:,其中22.(8分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.23.(8分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?24.(8分)(1)计算:(﹣1)2020+﹣|﹣|+(π﹣2019)0(2)解方程组:25.(10分)如图所示,在图形中标出点A、B、C关于直线l的对称点D、E、F.若M为AB的中点,在图中标出它的对称点N.若AB=10,AB边上的高为4,则△DEF的面积为多少?26.(10分)某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克?进价(元/千克)标价(元/千克)苹果38提子410

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据轴对称的定义,逐一判断选项,即可得到答案.【详解】A是轴对称图形,不符合题意,B不是轴对称图形,符合题意,C是轴对称图形,不符合题意,D是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.2、C【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】A、由于82+92≠102,不能构成直角三角形,故本选项不符合题意;B、由于1.52+22≠52,不能构成直角三角形,故本选项不符合题意;C、由于62+82=102,能构成直角三角形,故本选项符合题意;D、由于202+212≠322,不能构成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3、D【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,

∴∠COM=∠COD,故A选项正确;

∵OM=ON=MN,

∴△OMN是等边三角形,

∴∠MON=60°,

∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON,

∴∠OCD=∠OCM=,

∴∠MCD=,

又∠CMN=∠AON=∠COD,∴∠MCD+∠CMN=180°,

∴MN∥CD,故C选项正确;

∵MC+CD+DN>MN,且CM=CD=DN,

∴3CD>MN,故D选项错误;

故选D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.4、B【分析】利用平移的规律求出a,b即可解决问题.【详解】解:∵A(1,﹣3),B(2,﹣2)平移后为A1(a,1),B1(5,b),∴平移方式为向右平移3个单位长度,向上平移4个单位长度,∴a=4,b=2,∴ab=42=16,故选:B.【点睛】本题主要考查平移变换和有理数的乘方运算,解题的关键是根据点的平移求出a,b的值.5、C【解析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】解:A、是多项式乘法,不是分解因式,故本选项错误;

B、是提公因式法,不是分解因式,故本选项错误;

C、右边是积的形式,故本选项正确.D、没有把一个多项式化为几个整式的积的形式,错误.

故选:C.【点睛】此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.6、B【解析】试题解析:由勾股定理得:∴数轴上点A所表示的数是故选B.7、B【解析】连接BE,利用垂直平分线的性质可得AE=BE,从而∠EBA=∠A=30°,然后用含30°角的直角三角形的性质求解.【详解】解:连接BE.∵边的垂直平分线交于点,交于点∴AE=BE∴∠EBA=∠A=30°又∵在中,,∴∠CBA=60°,∴∠CBE=30°∴在中,∠CBE=30°BE=2CE=4即AE=4故选:B.【点睛】本题考查垂直平分线的性质及含30°直角三角形的性质,题目比较简单,正确添加辅助线是解题关键.8、D【分析】根据平行四边形的判定定理依次判断即可得到答案.【详解】解:两组对边分别平行的四边形是平行四边形,A是真命题;两组对边分别相等的四边形是平行四边形,B是真命题;对角线互相平分的四边形是平行四边形,C是真命题;一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,D是假命题;故选:D.【点睛】此题考查命题的分类:真命题和假命题,正确的命题是真命题,错误的命题是假命题,熟记定义并熟练运用其解题是关键.9、D【分析】根据完全平方公式可知,这里首末两项是2x和3y的平方,那么中间项为加上或减去2x和3y的乘积的2倍.【详解】解:∵4x2+kxy+9y2是完全平方式,∴kxy=±2×2x•3y,解得k=±1.故选:D.【点睛】本题考查完全平方公式的知识,解题的关键是能够理解并灵活应用完全平方公式.10、D【分析】根据角平分线的性质即可判断①;根据HL可得Rt△DBE≌Rt△DCF,进而可得∠DBE=∠C,BE=CF,于是可判断②;根据平角的定义和等量代换即可判断③;根据HL可得Rt△ADE≌Rt△ADF,于是可得AE=AF,进一步根据线段的和差关系即可判断④,从而可得答案.【详解】解:∵平分,于,于,∴,DE=DF,故①正确;在Rt△DBE和Rt△DCF中,∵DE=DF,,∴Rt△DBE≌Rt△DCF(HL),∴∠DBE=∠C,BE=CF,故②正确;∵,∴,故③正确;在Rt△ADE和Rt△ADF中,∵DE=DF,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴,故④正确;综上,正确的结论是:①②③④,有4个.故选:D.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质等知识,属于常考题型,熟练掌握上述知识是解题的关键.二、填空题(每小题3分,共24分)11、50°或130°【分析】分类讨论当三角形是等腰锐角三角形和等腰钝角三角形两种情况,画出图形并结合三角形的内角和定理及三角形外角的性质,即可求出顶角的大小.【详解】(1)当三角形是锐角三角形时,如下图.根据题意可知,∵三角形内角和是,∴在中,(2)当三角形是锐角三角形时,如下图.根据题意可知,同理,在中,∵是的外角,∴故答案为或【点睛】本题考察了等腰三角形性质和三角形外角的性质以及三角形内角和定理的运用,分类讨论该等腰三角形是等腰锐角三角形或等腰钝角三角形是本题的关键.12、1【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】∵,,

∴.

故答案为:1.【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.13、=【分析】过A点作,过F点作,可证,得到,再根据面积公式计算即可得到答案.【详解】解:过A点作,过F点作..在与中....,..故答案:=【点睛】本题主要考查了三角形的全等判定和性质,以及三角形的面积公式,灵活运用全等三角形的判定和性质是解题的关键.14、【分析】连接AD,如图,先利用勾股定理计算出BC=8,利用基本作图得到PQ垂直平分AB,所以DA=DB,设CD=x,则DB=DA=8-x,利用勾股定理得到x2+62=(8-x)2,然后解方程即可.【详解】解:连接AD,如图,

∵∠C=90°,AC=3,AB=5,

∴BC==8,由作法得PQ垂直平分AB,

∴DA=DB,

设CD=x,则DB=DA=8-x,

在Rt△ACD中,x2+62=(8-x)2,解得x=,即CD的长为.故答案为:.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和勾股定理.15、①④【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a=b=c.进而判断即可.【详解】解:∵a2+b2+c2=ab+bc+ca,

∴2a2+2b2+2c2=2ab+2bc+2ca,

即(a-b)2+(b-c)2+(a-c)2=0,

∴a=b=c,

∴此三角形为等边三角形,同时也是锐角三角形.

故答案是:①④.【点睛】此题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.16、或【解析】设C的点坐标为,先根据题中条件画出两种情况的图形(见解析),再根据等腰直角三角形的性质、三角形全等的判定定理与性质、点坐标的定义分别求解即可.【详解】设C的点坐标为由题意,分以下两种情况:(1)如图1,是等腰直角三角形,过点A作轴,过点C作x轴的垂线,交DA的延长线于点E则又则点C的坐标为(2)如图2,是等腰直角三角形,过点A作轴,过点C作轴则同理可证:则点C的坐标为综上,点C的坐标为或故答案为:或.【点睛】本题考查了三角形全等的判定定理与性质、等腰直角三角形的性质、点的坐标等知识点,依据题意,正确分两种情况并画出图形是解题关键.17、【解析】设小李去书店时的速度为每小时x千米,根据题意得:,故答案为:.18、58【分析】根据角平分线的定义和三角形外角性质然后整理得到∠BAC=2∠P,代入数据进行计算即可得解.【详解】∵BP、CP分别是∠ABC和∠ACD的平分线,

∴∠ACD=2∠PCD,∠ABC=2∠PBC,由三角形的外角性质得,∠ACD=∠BAC+∠ABC,∠PCD=∠P+∠PBC,∴∠BAC+∠ABC=∠ACD=2∠PCD=2(∠P+∠PBC)=2∠P+2∠PBC=2∠P+∠ABC,∴∠BAC=2∠P,∵∠P=29,∴∠BAC=58.故答案为:58.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和,角平分线的定义,熟记性质并准确识图最后求出∠BAC=2∠P是解题的关键.三、解答题(共66分)19、(答案见详解)【分析】先证明三角形全等,即,得出对应角相等,即,得到△AEB为等腰三角形,故可得出.【详解】在和中,根据,可得到∴在中,可得(等腰三角形,等角对等边)故得证.【点睛】本题关键在于先证明三角形全等,再利用全等三角形的性质,得出对应角相等,最后得出结论.20、(1)这次被调查的学生人数为500人;(2)见解析;(3)扇形统计图中B对应的圆心角的度数为54°.【分析】(1)根据项目C的人数及其所占百分比即可求得被调查的人数;(2)总人数减去B、C、D的人数和求出A的人数,补全图形即可;(3)用360°乘以B项目人数所占百分比即可.【详解】解:(1)140÷28%=500(人).∴这次被调查的学生人数为500人.(2)A项目的人数为500﹣(75+140+245)=40(人),补全图形如下:(3)×360°=54°.∴扇形统计图中B对应的圆心角的度数为54°.【点睛】本题考查的是条形统计图和扇形统计图,读懂统计图、理解不同的统计图中数据的区别和联系是解答本题的关键.21、,12.【分析】先利用完全平方公式、多项式乘法去括号,再通过合并同类项进行化简,最后将x和y的值代入即可.【详解】原式将代入得:原式.【点睛】本题考查了多项式的乘法、整式的加减(合并同类项),熟记运算法则和公式是解题关键.22、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:解得:,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=,∴点D的坐标为(,);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=,∴点D的坐标为(,),又∵点D在直线y=−2x+1上,∴,解得:k=,∴点D的坐标为(,);综合所述,点D的坐标为(,)或(4,−7)或(,).【点睛】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.23、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.【分析】(1)设打折前甲品牌粽子每盒x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论