2022年山东泰安数学九上期末统考模拟试题含解析_第1页
2022年山东泰安数学九上期末统考模拟试题含解析_第2页
2022年山东泰安数学九上期末统考模拟试题含解析_第3页
2022年山东泰安数学九上期末统考模拟试题含解析_第4页
2022年山东泰安数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为()A. B.C. D.2.已知点是线段的一个黄金分割点,则的值为()A. B. C. D.3.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D.(2n+1,)4.有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15 B.n(n+1)=15C.n(n﹣1)=30 D.n(n+1)=305.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B.π C. D.6.如图,将绕点逆时针旋转得到,则下列说法中,不正确的是()A. B. C. D.7.已知2x=5y(y≠0),则下列比例式成立的是()A. B. C. D.8.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是(

)A.2 B.4 C.6 D.89.如图,某幢建筑物从2.25米高的窗口用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点离墙1米,离地面3米,则水流下落点离墙的距离是()A.2.5米 B.3米 C.3.5米 D.4米10.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为()A.-8 B.-6 C.-4 D.-211.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为()A.110° B.125° C.130° D.140°12.如图,⊙O是△ABC的外接圆,连接OC、OB,∠BOC=100°,则∠A的度数为()A.30° B.40° C.50° D.60°二、填空题(每题4分,共24分)13.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.14.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是_______m.15.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=__.16.如图,直线与轴交于点,与轴交于点,点在轴的正半轴上,,过点作轴交直线于点,若反比例函数的图象经过点,则的值为_________________.17.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.18.如图,在平面直角坐标系中,已知点E(﹣4,2),F(﹣1,﹣1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E'的坐标为_____.三、解答题(共78分)19.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?20.(8分)已知:中,.(1)求作:的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若的外接圆的圆心到边的距离为4,,求的面积.21.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.22.(10分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.23.(10分)已知,二次函数(m,n为常数且m≠0)(1)若n=0,请判断该函数的图像与x轴的交点个数,并说明理由;(2)若点A(n+5,n)在该函数图像上,试探索m,n满足的条件;(3)若点(2,p),(3,q),(4,r)均在该函数图像上,且p<q<r,求m的取值范围.24.(10分)已知,二次函数的图象,如图所示,解决下列问题:(1)关于的一元二次方程的解为;(2)求出抛物线的解析式;(3)为何值时.25.(12分)(问题发现)如图1,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是;(问题探究)如图2所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°.新区管委会想在路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,即分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.显然,为了快捷环保和节约成本,就要使线段PE、EF、FP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为km;(拓展应用)如图3是某街心花园的一角,在扇形OAB中,∠AOB=90°,OA=12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE、DE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.请问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.26.解方程:3x(x﹣1)=x﹣1.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为:.故选:B.【点睛】本题考查了抛物线的平移,属于基础题型,熟练掌握抛物线的平移规律是解题的关键.2、A【解析】试题分析:根据题意得AP=AB,所以PB=AB-AP=AB,所以PB:AB=.故选B.考点:黄金分割点评:本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点;其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.3、C【解析】试题分析:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选C.考点:坐标与图形变化-旋转.4、C【解析】由于每两个队之间只比赛一场,则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=15场,依此等量关系列出方程即可.【详解】试题解析:∵有支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为∴共比赛了15场,即故选C.5、D【解析】试题分析:根据弧长公式知:扇形的弧长为.故选D.考点:弧长公式.6、A【分析】由旋转的性质可得△ABC≌△AB'C',∠BAB'=∠CAC'=60°,AB=AB',即可分析求解.【详解】∵将△ABC绕点A逆时针旋转60°得到△AB′C′,∴△ABC≌△AB'C',∠BAB'=∠CAC'=60°,∴AB=AB',∠CAB'<∠BAB'=60°,故选:A.【点睛】本题考查了旋转的性质,全等三角形的性质,熟练运用旋转的性质是关键.7、B【解析】试题解析:∵2x=5y,∴.故选B.8、D【解析】先根据三角形中位线的性质得到DE=AB,从而得到相似比,再利用位似的性质得到△DEF∽△ABC,然后根据相似三角形的面积比是相似比的平方求解即可.【详解】∵点D,E分别是OA,OB的中点,∴DE=AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△ABC,∴=,∴△ABC的面积=2×4=8故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.9、B【分析】由题意可以知道M(1,2),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+2,把A(0,2.25)代入,得2.25=a+2,a=-0.1.∴抛物线的解析式为:y=-0.1(x-1)2+2.当y=0时,0=-0.1(x-1)2+2,解得:x1=-1(舍去),x2=2.OB=2米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.10、C【分析】连接OB,过点B作轴于点D,过点C作于点E,证,再利用三角形的面积求解即可.【详解】解:连接OB,过点B作轴于点D,过点C作于点E,∵点P是BC的中点∴PC=PB∵∴∴∵∴∵点在双曲线上∴∴∴∴∵点在双曲线上∴∴.故选:C.【点睛】本题考查的知识点是反比例函数的图象与性质、平行四边形的性质、全等三角形的判定与性质、三角形的面积公式等,掌握以上知识点是解此题的关键.11、B【解析】解:∵点O为△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I为△ABC的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故选B.12、C【分析】直接根据圆周角定理即可得出结论.【详解】∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC==50°.故选:C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题(每题4分,共24分)13、a≤且a≠1.【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.14、1【分析】先判断出DE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解.【详解】∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×50=1米.故答案为1.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.15、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解.【详解】解:y=0时,0=x2﹣4x+1,解得x1=1,x2=1∴线段AB的长为2,∵与y轴交点C(0,1),∴以AB为底的△ABC的高为1,∴S△ABC=×2×1=1,故答案为:1.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法.16、1【解析】先求出直线y=x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.【详解】解:令x=0,得y=x+2=0+2=2,

∴B(0,2),

∴OB=2,

令y=0,得0=x+2,解得,x=-6,

∴A(-6,0),

∴OA=OD=6,

∵OB∥CD,

∴CD=2OB=4,

∴C(6,4),

把c(6,4)代入y=(k≠0)中,得k=1,

故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.17、【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、(﹣8,4),(8,﹣4)【分析】根据在平面直角坐标系中,位似变换的性质计算即可.【详解】解:以原点O为位似中心,把△EFO扩大到原来的2倍,点E(﹣4,2),∴点E的对应点E'的坐标为(﹣4×2,2×2)或(4×2,﹣2×2),即(﹣8,4),(8,﹣4),故答案为:(﹣8,4),(8,﹣4).【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.三、解答题(共78分)19、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【分析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得,解得:44≤x≤46.w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.20、(1)详见解析;(2)【分析】(1)分别作出AB、BC的垂直平分线,两条垂直平分线的交点即是圆的圆心,以O为圆心,OB为半径作圆即可,如图所示.(2)已知的外接圆的圆心到边的距离为4,,利用勾股定理即可求出OB2,再根据圆的面积公式即可求解.【详解】解:(1)如图(2)设BC的垂直平分线交BC于点D由题意得:,在Rt中,∴【点睛】本题主要考查的是圆的外接三角形尺规作图法和勾股定理的应用,掌握这两个知识点是解题的关键.21、(1)证明见解析;(2).【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积22、(1)y=-(2)点P(﹣6,0)或(﹣2,0)【分析】(1)利用点A在y=﹣x+4上求a,进而代入反比例函数求k.(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.【详解】(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数∴k=﹣3,∴反比例函数的表达式为(2)联立两个函数的表达式得解得或∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4∴点C(﹣4,0)设点P的坐标为(x,0)∵,∴解得x1=﹣6,x2=﹣2∴点P(﹣6,0)或(﹣2,0)【点睛】本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.23、(1)函数图像与轴有两个交点;(2)或;(3)且m≠0【分析】(1)先确定△=b2-4ac>0,可得函数图象与轴有两个交点;(2)将点A代入中即可得m,n应满足的关系;(3)根据二次函数的增减性进行分类讨论.【详解】解:(1)当时,原函数为该函数图像与轴有两个交点(2)将代入原函数得:或(3)对称轴①当2,3,4在对称轴的同一侧时,且m≠0且m≠0②当2,3,4在对称轴两侧时,综上:且m≠0【点睛】本题考查二次函数图象的特征,利用图象特征与字母系数的关系,观察图象即数形结合是解答此题的关键.24、(1)-1或2;(2)抛物线解析式为y=-x2+2x+2;(2)x>2或x<-1.【分析】(1)直接观察图象,抛物线与x轴交于-1,2两点,所以方程的解为x1=-1,x2=2.

(2)设出抛物线的顶点坐标形式,代入坐标(2,0),即可求得抛物线的解析式.

(2)若y<0,则函数的图象在x轴的下方,找到对应的自变量取值范围即可.【详解】解:(1)观察图象可看对称轴出抛物线与x轴交于x=-1和x=2两点,

∴方程的解为x1=-1,x2=2,

故答案为:-1或2;

(2)设抛物线解析式为y=-(x-1)2+k,

∵抛物线与x轴交于点(2,0),

∴(2-1)2+k=0,

解得:k=4,

∴抛物线解析式为y=-(x-1)2+4,

即:抛物线解析式为y=-x2+2x+2;

(2)抛物线与x轴的交点(-1,0),(2,0),当y<0时,则函数的图象在x轴的下方,由函数的图象可知:x>2或x<-1;【点睛】本题主要考查了二次函数与一元二次方程、不等式的关系,以及求函数解析式的方法,能从图像中得到关键信息是解决此题的关键.25、[问题发现]15;[问题探究];[拓展应用]①出口E设在距直线OB的7.1米处可以使四边形CODE的面积最大为60平方米,②出口E距直线OB的距离为米.【分析】[问题发现]△PAB的底边AB一定,面积最大也就是P点到AB的距离最大,故当OP⊥AB时,时最大,值是5,再计算此时△PAB面积即可;[问题探究]先由对称将折线长转化线段长,即分别以、所在直线为对称轴,作出关于的对称点为,关于的对称点为,连接,易求得:,而,即当最小时,可取得最小值.[拓展应用]①四边形CODE面积=S△CDO+S△CDE′,求出S△CDE′面积最大时即可;②先利用相似三角形将费用问题转化为CE+1DE=CE+QE,求CE+QE的最小值问题.然后利用相似三角形性质和勾股定理求解即可。【详解】[问题发现]解:当OP⊥AB时,时最大,,此时△APB的面积=,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论