2023届北京市东城区北京第六十六中学高一上数学期末经典模拟试题含解析_第1页
2023届北京市东城区北京第六十六中学高一上数学期末经典模拟试题含解析_第2页
2023届北京市东城区北京第六十六中学高一上数学期末经典模拟试题含解析_第3页
2023届北京市东城区北京第六十六中学高一上数学期末经典模拟试题含解析_第4页
2023届北京市东城区北京第六十六中学高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.命题“,使得”的否定是()A., B.,C., D.,2.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限3.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)4.函数的定义域为()A.(-∞,2) B.(-∞,2]C. D.5.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.6.下图记录了某景区某年月至月客流量情况:根据该折线图,下列说法正确的是()A.景区客流量逐月增加B.客流量的中位数为月份对应的游客人数C.月至月的客流量情况相对于月至月波动性更小,变化比较平稳D.月至月的客流量增长量与月至月的客流量回落量基本一致7.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是A. B.C. D.8.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.9.半径为3cm的圆中,有一条弧,长度为cm,则此弧所对的圆心角为()A. B.C. D.10.设全集,集合,则()A.{3,5} B.{2,4}C.{1,2,3,4,5} D.{2,3,4,5,6}11.若,,,则有A. B.C. D.12.若,则的值为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.命题“”的否定为___________.14.已知集合M={3,m+1},4∈M,则实数m的值为______15.函数的单调增区间为________16.已知,若是的充分不必要条件,则的取值范围为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(1)求函数的定义域,并判断函数的奇偶性;(2)求使x的取值范围18.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间的图象(只作图不写过程).19.(1)已知角的终边经过点,求的值;(2)已知,且,求cos()的值.20.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?21.设全集,集合(1)求;(2)若集合满足,求实数的取值范围.22.在等腰梯形中,已知,,,,动点和分别在线段和上(含端点),且,且(、为常数),设,.(Ⅰ)试用、表示和;(Ⅱ)若,求的最小值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B2、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B3、A【解析】根据二次根式的性质求出函数的定义域即可【详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.4、D【解析】利用根式、分式的性质列不等式组求定义域即可.【详解】由题设,,可得,所以函数定义域为.故选:D5、C【解析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.6、C【解析】根据折线图,由中位数求法、极差的意义,结合各选项的描述判断正误即可.【详解】A:景区客流量有增有减,故错误;B:由图知:按各月份客流量排序为且是10个月份的客流量,因此数据的中位数为月份和月份对应客流量的平均数,故错误;C:由月至月的客流量相对于月至月的客流量:极差较小且各月份数据相对比较集中,故波动性更小,正确;D:由折线图知:月至月的客流量增长量与月至月的客流量回落量相比明显不同,故错误.故选:C7、C【解析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案【详解】∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案为:C【点睛】(1)本题主要考查不动点定义及利用定义解答数学问题的能力,考查指数函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)正确理解不动区间的定义,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的关键8、C【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C9、A【解析】利用弧长公式计算即可【详解】,故选:A10、D【解析】先求补集,再求并集.详解】,则.故选:D11、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.12、B【解析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【详解】因为,又,所以原式.故选B【点睛】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据特称命题的否定为全称命题求解.【详解】因为特称命题的否定为全称命题,所以“”的否定为“”,故答案:.14、3【解析】∵集合M={3,m+1},4∈M,∴4=m+1,解得m=3故答案为3.15、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.16、【解析】根据不等式的解法求出的等价条件,结合充分不必要条件的定义建立不等式关系即可【详解】由得得或,由得或,得或,若是的充分不必要条件,则即得,又,则,即实数的取值范围是,故填:【点睛】本题主要考查充分条件和必要条件的应用,求出不等式的等价条件结合充分条件和必要条件的定义进行转化是解决本题的关键,为基础题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)定义域为,奇函数;(2)【解析】(1)只需解不等式组即可得出f(x)的定义域;求f(﹣x)即可得到f(﹣x)=﹣f(x),从而得出f(x)为奇函数;(2)讨论a:a>1,和0<a<1,根据f(x)的定义域及对数函数的单调性即可求得每种情况下原不等式的解详解】解:(1)要使函数(且)有意义,则,解得故函数的定义域为,关于原点对称,又,所以,为奇函数(2)由,即,当时,原不等式等价为,解得当,原不等式等价为,解得又因为的定义域为,所以,当时,使的x的取值范围是.当时,使的x的取值范围是18、(1)最小正周期T=π;单调递减区间为(k∈Z);(2)图象见解析.【解析】(1)利用二倍角公式化简函数,再根公式求函数的周期和单调递减区间;(2)利用“五点法”画出函数的图象.【详解】解:f(x)=+cos2x=sin2x+cos2x=sin(2x+)(1)∴函数f(x)的最小正周期T==π,当2kπ+≤2x+≤2kπ+π,k∈Z,时,即2kπ+≤2x≤2kπ+π,k∈Z,故kπ+≤x≤kπ+π,k∈Z∴函数f(x)单调递减区间为[kπ+,kπ+π](k∈Z)(2)图象如下:19、(1);(2)【解析】(1)根据三角函数的定义可得,代入直接计算即可;(2)根据同角三角函数的基本关系求出,利用两角和的余弦公式计算即可.【详解】(1)因为角的终边经过点,,所以,,所以;(2)因,且,则,.20、乙商场中奖的可能性大.【解析】分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到试题解析:如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积,阴影部分的面积为,则在甲商场中奖的概率为;如果顾客去乙商场,记3个白球为,,,3个红球为,,,记(,)为一次摸球的结果,则一切可能的结果有:,,,,,,,,,,,,,,,共15种,摸到的是2个红球有,,,共3种,则在乙商场中奖的概率为,又,则购买该商品的顾客在乙商场中奖的可能性大.21、(1)或(2)【解析】(1)化简集合,利用交集的定义求解,再利用补集的定义求解;(2)化简集合,由,得,列不等式求解.【小问1详解】化简,,所以或.【小问2详解】,因为,所以,所以,所以实数的取值范围为22、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)过点作,交于点,证明出,从而得出,然后利用向量加法的三角形法则可将和用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论