江西省南昌石埠初级中学2022-2023学年九年级数学上册期末经典试题含解析_第1页
江西省南昌石埠初级中学2022-2023学年九年级数学上册期末经典试题含解析_第2页
江西省南昌石埠初级中学2022-2023学年九年级数学上册期末经典试题含解析_第3页
江西省南昌石埠初级中学2022-2023学年九年级数学上册期末经典试题含解析_第4页
江西省南昌石埠初级中学2022-2023学年九年级数学上册期末经典试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知关于x的方程ax2+bx+c=0(a≠0),则下列判断中不正确的是()A.若方程有一根为1,则a+b+c=0B.若a,c异号,则方程必有解C.若b=0,则方程两根互为相反数D.若c=0,则方程有一根为02.关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围为()A. B. C. D.3.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=24.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.5.在下列几何体中,主视图、左视图和俯视图形状都相同的是()A. B. C. D.6.如图,△ABC中,D为AC中点,AF∥DE,S△ABF:S梯形AFED=1:3,则S△ABF:S△CDE=()A.1:2 B.2:3 C.3:4 D.1:17.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=65°,∠ABC=68°,则∠A的度数为().A.112° B.68° C.65° D.52°8.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.9.如图,点()是反比例函数上的动点,过分别作轴,轴的垂线,垂足分别为,.随着的增大,四边形的面积()A.增大 B.减小 C.不确定 D.不变10.如图是二次函数图像的一部分,直线是对称轴,有以下判断:①;②>0;③方程的两根是2和-4;④若是抛物线上两点,则>;其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=_________.12.若,那么△ABC的形状是___.13.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.14.如图,在平行四边形中,是边上的点,,连接,相交于点,则_________.15.“永定楼”,作为门头沟区的地标性建筑,因其坐落在永定河畔而得名.为测得其高度,低空无人机在A处,测得楼顶端B的仰角为30°,楼底端C的俯角为45°,此时低空无人机到地面的垂直距离AE为23米,那么永定楼的高度BC是______米(结果保留根号).16.如图,一段抛物线记为,它与轴交于两点、,将绕旋转得到,交轴于,将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第8段抛物线上,则等于__________17.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为__________.18.如图,的顶点均在上,,则的半径为_________.三、解答题(共66分)19.(10分)如图,平面直角坐标系中,点、点在轴上(点在点的左侧),点在第一象限,满足为直角,且恰使∽△,抛物线经过、、三点.(1)求线段、的长;(2)求点的坐标及该抛物线的函数关系式;(3)在轴上是否存在点,使为等腰三角形?若存在,求出所有符合条件的点的坐标,若不存在,请说明理由.20.(6分)如图1,抛物线与轴交于,两点,与轴交于点,已知点,且对称轴为直线.(1)求该抛物线的解析式;(2)点是第四象限内抛物线上的一点,当的面积最大时,求点的坐标;(3)如图2,点是抛物线上的一个动点,过点作轴,垂足为.当时,直接写出点的坐标.21.(6分)(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在中,,是外一点,且,求的度数.若以点为圆心,为半径作辅助,则、必在上,是的圆心角,而是圆周角,从而可容易得到=________.(2)(问题解决)如图2,在四边形中,,,求的度数.(3)(问题拓展)如图3,是正方形的边上两个动点,满足.连接交于点,连接交于点,连接交于点,若正方形的边长为2,则线段长度的最小值是_______.22.(8分)计算:(1)2sin30°+cos45°tan60°(2)()0()-2tan230.23.(8分)已知等边△ABC,点D为BC上一点,连接AD.图1图2(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.24.(8分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求下列事件的概率.(1)两次都摸到红球;(2)第一次摸到红球,第二次摸到绿球.25.(10分)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.26.(10分)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA,顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用表示,且抛物线经过点B,C;(1)求抛物线的函数关系式,并确定喷水装置OA的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?

参考答案一、选择题(每小题3分,共30分)1、C【分析】将x=1代入方程即可判断A,利用根的判别式可判断B,将b=1代入方程,再用判别式判断C,将c=1代入方程,可判断D.【详解】A.若方程有一根为1,把x=1代入原方程,则,故A正确;B.若a、c异号,则△=,∴方程必有解,故B正确;C.若b=1,只有当△=时,方程两根互为相反数,故C错误;D.若c=1,则方程变为,必有一根为1.故选C.【点睛】本题考查一元二次方程的相关概念,熟练掌握一元二次方程的定义和解法是关键.2、B【分析】根据方程有两个不等的实数根,故△>0,得不等式解答即可.【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<.故选B.【点睛】此题考查了一元二次方程根的判别式.3、D【详解】解:先移项,再把方程左边分解得到x(x﹣1﹣1)=0,原方程化为x=0或x﹣1﹣1=0,解得:x1=0;x2=2故选D.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧进行计算是解题关键.4、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.5、C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依次找到主视图、左视图和俯视图形状都相同的图形即可.【详解】解:A、圆台的主视图和左视图相同,都是梯形,俯视图是圆环,故选项不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,故选项不符合题意;C、球的三视图都是大小相同的圆,故选项符合题意.D、圆锥的三视图分别为等腰三角形,等腰三角形,含圆心的圆,故选项不符合题意;故选C.【点睛】本题考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.6、D【分析】本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.【详解】△ABC中,∵AF∥DE,∴△CDE∽△CAF,∵D为AC中点,∴CD:CA=1:2,∴S△CDE:S△CAF=(CD:CA)2=1:4,∴S△CDE:S梯形AFED=1:3,又∵S△ABF:S梯形AFED=1:3,∴S△ABF:S△CDE=1:1.故选D.【点睛】本题考查了中点的定义,相似三角形的判定与性质,根据相似三角形的性质得出S△CDE:S△CAF=1:4是解题的关键.7、C【分析】由四边形ABCD内接于⊙O,可得∠BAD+∠BCD=180°,又由邻补角的定义,可证得∠BAD=∠DCE.继而求得答案.【详解】解:∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠A=∠DCE=65°.故选:C.【点睛】此题考查了圆的内接四边形的性质.注意掌握圆内接四边形的对角互补是解此题的关键.8、C【解析】试题解析:这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=.故选C.考点:1.概率公式;2.中心对称图形.9、D【分析】由长方形的面积公式可得出四边形的面积为mn,再根据点Q在反比例函数图象上,可知,从而可判断面积的变化情况.【详解】∵点∴四边形的面积为,∵点()是反比例函数上的动点∴四边形的面积为定值,不会发生改变故选:D.【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数比例系数的几何意义是解题的关键.10、C【分析】根据函数图象依次计算判断即可得到答案.【详解】∵对称轴是直线x=-1,∴,∴,故①正确;∵图象与x轴有两个交点,∴>0,故②正确;∵图象的对称轴是直线x=-1,与x轴一个交点坐标是(2,0),∴与x轴另一个交点是(-4,0),∴方程的两根是2和-4,故③正确;∵图象开口向下,∴在对称轴左侧y随着x的增大而增大,∴是抛物线上两点,则<,故④错误,∴正确的有①、②、③,故选:C.【点睛】此题考查二次函数的性质,根据函数图象判断式子的正负,正确理解函数图象,掌握各式子与各字母系数的关系是解题的关键.二、填空题(每小题3分,共24分)11、.【解析】∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为:.12、等边三角形【分析】由非负性和特殊角的三角函数值,求出∠A和∠B的度数,然后进行判断,即可得到答案.【详解】解:,∴,,∴∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形;故答案为:等边三角形.【点睛】本题考查了特殊角的三角函数值,非负性的应用,解题的关键是熟练掌握非负数的性质,正确得到∠A和∠B的度数.13、1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1)×(−1)=1,故答案为1.14、【分析】设△AEO的面积为a,由平行四边形的性质可知AE∥CD,可证△AEO∽△CDO,相似比为AE:CD=EO:DO=3:4,由相似三角形的性质可求△CDO的面积,由等高的两个三角形面积等于底边之比,可求△ADO的面积,得出的值.【详解】解:设△AEO的面积为a,∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,∵,∴AE=CD=AB,由AB∥CD知△AEO∽△CDO,∴,∴,∵设△AEO的面积为a,,∴S△CDO=,∵△ADO和△AEO共高,且EO:DO=3:4,,∴S△ADO=,则S△ACD=S△ADO+S△CDO=,∴故答案为:.【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得出相似三角形,利用相似比求相似三角形的面积,等高的三角形面积.15、【分析】过点A作BC的垂线,垂足为D,则∠DAC=45°,∠BAD=30°,进一步推出AD=CD=AE=米,再根据tan∠BAD==,从而求出BD的值,再由BC=BD+CD即可得到结果.【详解】解:如图所示,过点A作AD⊥BC于D,则∠DAC=45°,∠BAD=30°,∵AD⊥BC,∠DAC=45°,∴AD=CD=AE=米,在Rt△ABD中,tan∠BAD==,∴BD=AD==23(米)∴BC=BD+CD=(米)故答案为.【点睛】本题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.16、【分析】求出抛物线与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方、第偶数号抛物线都在x轴下方,再根据向右平移横坐标相加表示出抛物线的解析式,然后把点P的横坐标代入计算即可.【详解】抛物线与x轴的交点为(0,0)、(2,0),将绕旋转180°得到,则的解析式为,同理可得的解析式为,的解析式为的解析式为的解析式为的解析式为的解析式为∵点在抛物线上,∴故答案为【点睛】本题考查的是二次函数的图像性质与平移,能够根据题意确定出的解析式是解题的关键.17、【分析】同圆或等圆中,两弦相等,所对的优弧或劣弧也对应相等,据此求解即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∴===,∴的长等于⊙O周长的四分之一,∵⊙O的半径为6,∴⊙O的周长==,∴的长等于,故答案为:.【点睛】本题主要考查了圆中弧与弦之间的关系,熟练掌握相关概念是解题关键.18、1【分析】连接AO,BO,根据圆周角的性质得到,利用等边三角形的性质即可求解.【详解】连接AO,BO,∵∴又AO=BO∴△AOB是等边三角形,∴AO=BO=AB=1即的半径为1故答案为1.【点睛】此题主要考查圆的半径,解题的关键是熟知圆周角的性质.三、解答题(共66分)19、(1)OB=6,=;(2)的坐标为;;(3)存在,,,,【分析】(1)根据题意先确定OA,OB的长,再根据△OCA∽△OBC,可得出关于OC、OA、OB的比例关系式即可求出线段、的长;(2)由题意利用相似三角形的对应边成比例和勾股定理来求C点的坐标,并将C点坐标代入抛物线中即可求出抛物线的解析式;(3)根据题意运用等腰三角形的性质,对所有符合条件的点的坐标进行讨论可知有四个符合条件的点,分别进行分析求解即可.【详解】解:(1)由()得,,即:,∵∽∴∴(舍去)∴线段的长为.(2)∵∽∴,设,则,由得,解得(-2舍去),∴,,过点作于点,由面积得,∴的坐标为将点的坐标代入抛物线的解析式得∴.(3)存在,,,①当P1与O重合时,△BCP1为等腰三角形∴P1的坐标为(0,0);②当P2B=BC时(P2在B点的左侧),△BCP2为等腰三角形∴P2的坐标为(6-2,0);③当P3为AB的中点时,P3B=P3C,△BCP3为等腰三角形∴P3的坐标为(4,0);④当BP4=BC时(P4在B点的右侧),△BCP4为等腰三角形∴P4的坐标为(6+2,0);∴在x轴上存在点P,使△BCP为等腰三角形,符合条件的点P的坐标为:,,,.【点睛】本题考查二次函数的综合问题,掌握由抛物线求二次函数的解析式以及用几何中相似三角形的性质求点的坐标等知识运用数形结合思维分析是解题的关键.20、(1);(2)(3)或或或【分析】(1)由对称性可知抛物线与轴的另一个交点为,将点,坐标代入,联立方程组求解即可得到,即可得到抛物线的解析式.(2)作轴交直线于点,设直线BC:y=kx+b,代入B、C两点坐标求得直线为,设点为,则点为,,表示出S,化简整理可得,根据二次函数的性质得当时,的面积最大,此时点坐标为(3)根据A、B坐标易得AB=4,当PQ=3时满足条件,P点的纵坐标为±3,代入函数解析式求得P点的横坐标,即可得到P点的坐标.【详解】解:(1)由对称性可知抛物线与轴的另一个交点为把点,坐标代入,,解得抛物线的解析式为.(2)如图1,作轴交直线于点设直线BC:y=kx+b,代入B(3,0),C(0,-3)可得解得:∴直线为设点为则点为当时,的面积最大,代入,可得=,此时点坐标为(3)∵A(-1,0),B(3,0)∴AB=4∵∴PQ=3,即P点纵坐标为±3,当y=3时,解得:当y=-3时,解得:x1=0,x2=2,综上,当时,或或或.【点睛】本题为二次函数的综合,涉及知识点有待定系数法、二次函数的最值及分类讨论思想.21、(1)45;(2)25°;(3)【解析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【详解】(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°−90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD=,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD−OH=−1.【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.22、(1)-2(2)【分析】(1)根据特殊角的三角函数值即可求解;(2)根据负指数幂、零指数幂及特殊角的三角函数值即可求解.【详解】(1)2sin30°+cos45°tan60°=2×+-×=1+-3=-2(2)()0()-2tan230=1-4+()2=-3+=.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值.23、(1)补全图形见解析.∠APE=60°;(2)补全图形见解析.,证明见解析.【分析】(1)根据题意,按照要求补全图形即可;(2)先补全图形,然后首先证明△ABD≌△BEC得出∠BAD=∠CBE,之后通过一系列证明得出△AQF≌△EQB,最后进一步从而得出即可.【详解】(1)补全图形如下,其中∠APE=60°,(2)补全图形.证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE.∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.∵AF是由AD绕点A逆时针旋转120°得到,∴AF=AD,∠DAF=120°.∵∠APE=60°,∴∠APE+∠DAP=180°.∴AF∥BE∴∠1=∠2∵△ABD≌△BEC,∴AD=BE.∴AF=BE.在△AQF和△EQB中,∴△AQF≌△EQB(AAS)∴AQ=QE∴∵AE=AC-CE,CD=BC-BD,且AE=BC,CD=BD.∴AE=CD..∴【点睛】本题主要考查了全等三角形的综合运用,熟练掌握相关概念是解题关键.24、(1);(2).【分析】(1)列表得出所有等可能的情况数,找出两次摸到红球的情况数,即可确定出所求的概率;(2)列表得出所有等可能的情况数,找出第一次摸到红球,第二次摸到绿球的情况数,即可确定出所求的概率.【详解】(1)列表如下:红绿红(红,红)(绿,红)绿(红,绿)(绿,绿)所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=;(2)由(1)得第一次摸到红球,第二次摸到绿球只有一种,故其概率为.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.25、(1)①OA⊥EF;②∠FA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论