




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料(高中数学)祝同学们学习进步高中数学常用公式及常用结论xAxCA,xCAxA.UUC(AB)CACB;C(AB)CACB.UUUUUUABAABBABCBCAUUACBCABRUUcard(AB)cardAcardBcard(AB)(ABC)(AB)(AB)(BC)C)(ABC).a,a,,a}222nnn12n2有nf(x)axbxc(a0);2f(x)a(xh)k(a0);2f(x)a(xx)(xx)(a0).12NNf(x)Mf(x)M[()()]0fxMfxNMNMNf(x)N|()fx022Mf(x)11.f(x)NMN(x)0(,)()()0在kkfkfkf1.特别地,ax212bxc0(a0)(k,k)f(k)f(k)0内,等价于,或21212bkkf(k)0且k2akkbf(k)0且k.1212222a1122fx(x)axbxc(a0)2p,qxb2abbf(p),f(q;p,qf(x)f(),f(x)2a2abf(pf(q,xp,qf(x)f(x)f(pf(q).,2amaxmaxminminbbxp,q2af(x)f(pf(q)xp,q,若,则当时,若,则2aminf(x)f(pf(q),f(x)f(pf(q).maxmin1教学资料(高中数学)祝同学们学习进步f(m)f(n)0f(x)0(,n).设f(x)xq2402pqf(x)0(,)f(m)0f(x)0在或pm2f(m)0f(n)0f(m)0f(n)0(,n)f(m)f(n)0或40或(n)0或af(m)0;2pqafpmn2402pqf(x)0(,n)f(m)0或.pm2(,),,,,,(1)在给定区间Lf(x,t)0(tf(x,t)0(xL).min(,)f(x,t)0t()恒成立的充要条件是(2)在给定区间f(x,t)0(xL).mana0a00或f(x)axbxc042b.b24ac0c0真真真假真假假假假假真n个nn个nx,x,x,x,p或qp且qpq或2教学资料(高中数学)祝同学们学习进步互否互为逆为逆互否否pqp是qqpp是qpqqpp是qxxa,b,xx1212f(x)f(x)(xx)f(x)f(x)00f(x在a,b21xx121212f(x)f(x)(xx)f(x)f(x)00f(x在a,b21xx112122y17.如果函数ff(x)f(x)0f(x)f(x)0f(x)为(x)g(x),和函数f(x)g(x);和yfu)和ug(x)yf[g(x)]yy若函数yf(x)是偶函数,则f(xa)f(xa);若函数yf(xa)是偶函数,则f(xa)f(xa).ab,则函数f(x)x;两yf(x)xRf(xa)fbx)(2ab2yf(xa)yfbx)x与a若f(x)f(xa),yf(x)yf(x)2a(x)axaxa(,0);若f(x)f(xa),2Pn1nnn10P(x)P(x)P(x)Pyf(x)(x)3教学资料(高中数学)祝同学们学习进步yf(x)xaf(ax)f(ax)f(2ax)f(x).abyf(x)xf(amx)fbmx)2f(abmx)f(mx).yf(x)yf(x)x0yabyf(a)yfbmx)x2my和f(x)yf(x)1yf(xa)byf(x)abf(x,y)0abf(xa,yb)0f(a)bf(b)a.1127.若函数yf(b)y[f(x)b]y[f(kxb),并不是,而函数11k1y[f(kxb)是y[f(x)b]1k(x)f(xy)f(x)f(yf(1)c.f,ff(x)af(xy)f(x)f(yf(1)a0,.x(x)logx()()((),ffxfyfa.aaa(x)xf(xy)f(x)f(y),f(1).f,'f(x)xg(x)xg(x),fxyfxfygxgy,()()()()()f(0)1,lim1.xx0f(x)f(xa)f(x)f(x)f(xa)0,1f(xa)(f(x)0),或f(x)(x)1(()0)fx,或ff()1f(x)f(x)f(xa),(f(x)0,1)f(x)或221f(x)1(f(x)0)f(x)f(xa)f(x)f(x)()fxff(xx)且f(a)1(f(x)f(x)1,0|xx2a)121f(x)f(x)12121212()f(x)f(x)f(x)f(x)f()f(x)f(x)f(x)f(x)()fxf(xa)f(x)f(xa)f(x)4教学资料(高中数学)祝同学们学习进步1man0,,n1mnN(a(anam1ma0,,1mnNnnman(a)a.nna;annna,a0当an|a.nna,a0araa(a0,r,sQ).srs(a)a(a0,r,sQ).rsrs(ab)ab(a0,b0,rQ).rrr若aplogNbaN(a0,a1,Nab.NN0a1m0m1N0(a,,maamnlogblogb01,011,N0n(aa,mnm,nmmaa若log(MN)logMlogN;aaaMNloglogMlogN;aaalogMnlogM(nR).naaf若f(x)(x)log(axbxc)(a0)b4f(x)R22a00;ma00a0R10b0x0xylog(bx)若a,,,aax11abab(0,)(,)bxlog()ax和上y上ya1a1(0,)(,)bxlog()ax和,aa设nm1p0a0a1,,log(np)logn().mpmmn2()logmlognlog2.aaa5教学资料(高中数学)祝同学们学习进步N(1p).pyyxxnn1s,an(a}nsaaa1ss,n2nn12nnn1aa(nddnad(nNn);*11nn(aa)(n1)snand1n22n1d1n(ad)n2.221aaaqq(nN);nn11n*1qn(1)aqn,q11s1qnna,q11aaq,q11n1q或s.nna,q11a:aqad,ab(q0)nn11nb(nd,q1abqndbq()d,q1;n1nq1nnbn(nd,(q1)s1qn,(q1).ddb)n1qq11q)abb)nx元a元,nbb)1n(x(0,)sinxxtanx.2(0,)xx.12若x2|x||x1.6教学资料(高中数学)祝同学们学习进步sin1tan=,tancot1.22,cosn(sin,2nsin()2n1(cos,2n(1)2cos,cos()2n1(1)sin,2)sincos;)cossin;).1)sin()sinsin22)cos()cossin.22baasinbcossin()abtan(,)=ab22sin2sincos.2112222.2tantan.1tan2sin33sin4sin4sinsin()sin()3.334cos3cos4coscos()cos()3.3333)).1332;x)y)xyTx),yxkkZT.,2abc2R.sinAsinBsinCabcbcA;222bcacacosB;222cab2abC.2227教学资料(高中数学)祝同学们学习进步111Sahbhch(h、h、h2122abcabc11SabsinCbcsinAcasinB.2221S(|OA||OB|)OAOB).222()ABCCABCAB22C2(AB).2sinxaxk(1)arcsina(kZ,|a1).kcosxax2ka(kZ,|a1).xaxka(kZ,aR).sinsink(1)(kZ).kcos2(kkZ.)tan(kZ).xaax(2ka,2ka),kZ.xaax(2ka,2ka),kZ.cosxa(|a1)x(2arccosa,2karccosa),kZ.xaax(2a,2a),kZ.tanxa(aR)x(karctana,k),kZ.2tanxa(aR)x(k,karctana),kZ.2aae、e121,使得a=λe+λe.21e12212(x,y)(x,y)xyxy0,且ba.设a=11221221a与bb·ba与b在a8教学资料(高中数学)祝同学们学习进步(x,y)(x,y)(xx,yy)(xx,yy)..11221212(x,y)(x,y)11221212(x,y)(x,y)(xx,yy).A11222121(x,yR(x,y).(x,y)(x,y)(xxyy).11221212xxyycos(x,y)(x,y)=1212xyxy112221222221=|ABABAB(xx)(yy)dA,B(x,y)(x,y)2221211122(x,y)(x,y),且b设a=1122xyxy0.1221aaxxyy0.1212(,),PxyP设P(x,y)P(x,y),P1211122212xxx121121yyy1211t(t112A(x,y)B(x,y)C(x,y),则△ABC的重心的坐标是△三个顶点的坐标分别为、、112233xxxyyyG(1,).3231233xxhxxh'''OPOPPP'.yykyyk'''(x',y')PP(h,k).'FFP'P(x,y)(h,k)P(xh,yk).'yf(x)C(h,k)C'C'yf(xh)k.按向量(h,k)yf(x),则C'平移后得到图象,若的解析式的函数解析式为图象CCC'yf(xh)k.C:f(x,y)0(h,k)C'C'f(xh,yk)0.(x,y)(h,k)(x,y).设O为ABC,B,Ca,b,c9教学资料(高中数学)祝同学们学习进步O为ABCO为ABCO为ABCO为ABC2OAOBOC.220..0.ABCA.O为的,bRab2a22aba,bRab2a3bcabc(a0,b0,c0).33(ab)(cd)(acbd),a,b,c,dR.22222ababab.x,ypxyxy2p;1xysxys2.4x,yR(xy)(xy)2xy22|xy||xy|当|xy||xy||xy||xy||xy|||当|xy|axbxc0(或0)(a0,b4ac0)ac22与2ca与2xxx(xx)(xx)0(xx);121212xx,或xx(xx)(xx)0(xx).121212当a>0xax2a2axa.xaxaxa或xa.22f(x)0ff(x)g(x)()0gx.f(x)g(x)f(x)0f(x)0(x)0(x)g(x)()0gx或.gf(x)[g(x210教学资料(高中数学)祝同学们学习进步f(x)0f(x)g(x)()0gx.f(x)[g(x2a1af(x)af(x)g(x);g(x)f(x)0logf(x)logg(x)g(x)0.aaf(x)g(x)0a1af(x)af(x)g(x);g(x)f(x)0logf(x)logg(x)g(x)0aaf(x)g(x)yyk(P(x,y)、P(x,y).12xx11122221(yyyk(xx)lP(x,y)k.11在y111blyyxxyyP(x,y)P(x,y)xx、((11yyxx12111222122xy1211b、b0()abC0B若l:ykxbl:ykxb,111222①l||lkk,bb;121212②llkk1.1212若l:AxByC0l:AxByC0,且AAB、B,1212111ABC12222ll1①;1ABC112222②llAABB0;121212kk||.121kk21:ykxbl:ykxbkk1)(l,,11122212ABAB||.1122AABB1212:AxByC0l:AxByC0AABB0(l,,111122221212lll与l.1221211教学资料(高中数学)祝同学们学习进步l到l12kk.211kk21kk1)(l:ykxbl:ykxb,,11122212ABAB.1221AABB1212:AxByC0l:AxByC0AABB0(l,,111122221212lll到l.12122P(x,y)yyk(xx)xxk000000P(x,y)A(xx)B(yy)0,AB00000l:AxByC0l:AxByC0,11112222(AxByC)(AxByC)0l1112222ybkbC00(0C00|C|d点P(x,y)l:C000AB2002C00或l:C0C00或若B0BAxByC与lBAxByCl与.若B0AClACl与与..(AxByC)(AxByC)00或1C11222:(AxByC)(AxByC)0AABB0(1112221212(AxByC)(AxByC)00或111222(AxByC)(AxByC)0111222(AxByC)(AxByC)0111222(xa)(yb)r.222x2yDxEyF0DE4F2(22cosxar.ybrsin(xx)(xx)(yy)(yy)0A(x,y)B(x,y)、12121122A(x,y)B(x,y),1122(xx)(xx)(yy)(yy)[(xx)(yy)(yy)(xx)]01212112112(xx)(xx)(yy)(yy)(axbyc)0,其中c的方程,λ是待定的0121212教学资料(高中数学)祝同学们学习进步过直线l:C0与圆DxEyF(AxByC)0yDxEyF0xyDxEyF0CxyDxEyF0的交点的圆系方程是:22xx2y2过圆C:x2与圆C:的交点的圆系方程是22211112222yDxEyF(xy(xa)(yb)rDxEyF)02222111222点P(x,y)22200若d(ax)by)2200dr点Pdr点Pdr点PC0dr0;dr0;dr0.AaBbC(xa)(yb)r222d.A2B2Or,OOd121212drr;12drr;12rrdrr;1212drr条公切线;120drr.12yDxEyF0.x22(x,y)00D(xx)E(yy)xxyyF0.020200D(xx)E(yy)(x,y)xxyyF0当00220000yyk(xx)00ykykxbx2yr22.P(x,y)xxyyr;200000kxr1k2.ykxacosxy222ab.ybsinab2xy22aba2b213教学资料(高中数学)祝同学们学习进步a2a2e(x),e(x).1c2cxy2x202y2022PP(x,y)ab1..00a2b2abxy2x2y2022(x,y)ab10200a2b2abxy2xxyy2abP(x,y)01.0a2b200ab22xy22abP(x,y)a2b200xxyy01.0a2b2xy22ab0CAaBbc22222.a2b2xy22aba2b2aa22|e(x)|,|e(x)|.1c2cxy2x202y2022PP(x,y)ab1..00a2b2abxy2x2y2022(x,y)ab10200a2b2abx2y102xy22bx.yab2a2b22axyx2y.2b0xyaba2ba2x22y221x22y0x02(abab2yxy2xxyy2a0,bP(x,y)01.0a2b200ab22xy22a0,bP(x,y)a2b200xxyy1.0a20b2xy22a0,b0AxByCAaBbc.22222a2b2y22px14教学资料(高中数学)祝同学们学习进步py2px(p0)CFx.220ppCDxxxxp.221212y2y22px.y22pxP(,)P(2pt2,2pt)或(x,y)y或P2pbb2ayca(x)(a的图象是抛物线:(1)顶点坐标为102.二次函数22ab4bb4b14b1222(,)(,2a)y.2a4a4a4ay22px(p0)y2px(p0).P(x,y)200(x,y)y22px(p0)y2px(p0).点P20P0(x,y)y22px(p0)y2px(p0).200y22px(p0)y2px(p0).点P(x,y)20P0(x,y)x22py(p0)x2py(p0).200点P(x,y)x22py(p0)x2py(p0).20点P0(x,y)x22py(p0)x2py(p0).200点P(x,y)x22py(p0)x2py(p0).200yy2px(p0)C0pB2AC.22pxP(x,y)yyp(xx).00002pxP(x,y)yy(xx).20000y22f(x,y)0f(x,y)0,12f(,y)f(,y)0(12x2kby2k1,其中kmax{a,b}kmin{a,b}2222a22min{a,b}kmax{a,b}当2222AB(xx)(yy)或221212ABk)(xx)|xx|1tan|yy|1co2AxyBxyt(,(,)2222112121122ykxb200kyc,,F(x,y)0F(x,y)0PxyFxxyy(,)(2-,2)0.0000F(x,y)0AxByC02(AxByC)AB2B(AxByC)ABF(x,y)0.2222xyxyAxBxyCyDxEyF0xx0代2xyy代y0代,02220215教学资料(高中数学)祝同学们学习进步xxyy用代x代y0022xyxyxxyyAxxBCyyDEF0000022200(((((.(((.(((.((((.(((((.((.0,bλ.B||tOP(1t)OAtOB.||AB、ABCD、、且ABCD,xyp.pPx,yMPxMAyMB,OPOMxMAyMB.x,yOOPxOAyOBzOCxyzkk1(16教学资料(高中数学)祝同学们学习进步Ok1O若O、C、DADxAByAC、AC与OD(1xy)OAxOByOC(O设O、A、B、Cx,y,z,使OPxOAyOBzOC.AB=al是llAlABlB,''则AB|AB|cos''(a,a,a)(b,b,b)则设=123123(ab,ab,ab);;112233(ab,ab,ab)112233(a,a,a)=123ababab;112233(x,y,z)(x,y,z)A111222=(xx,yy,zz).212121设a(x,y,z)b(x,y,z),111222xx12(yyababb;12zz12abab0xxyyzz0.121212(a,a,a)(b,b,b)设=123123ababab.112233aaabbb212222223312(ababab)(aaa)(bbb)2212223212223112233ABCDAC与BD所成的角为|()()|2222.2|a,b||ab||a||b||xxyyzz|=121212x21y21z21x2y2z222217教学资料(高中数学)祝同学们学习进步090b,bab(ABmarcsin(m|AB||m|ABC,ACBC、1、,AB为ABC2sinsin(sinAsinB)sin22222.12sinsinsin.22212130.若ABC,ACBC、,另两边AB1Btantan(sinAsinB)tan.,A为ABO''2222'2'212sinsinsin.22212larccosmn或arccosmn(m,n,.|m||n||m||n|设与与,12coscoscos与.12,21sinsinsinsin2sinsincos;22221212|180)(当且仅当1212(x,y,z)(x,y,z)若A111222=|ABABAB(xx)(yy)(zz).d222A,B212121lQh1a||b|)(ab)PllPQ22|a||CDn|d(l,,lnDl,l1dl,l为|n|12212点B|ABn|d).(nA|n|dhmncos.222dhmn2mncosEA,AF.222'18教学资料(高中数学)祝同学们学习进步dhmn2mncos(EAAF222''(a、bAAa、bE、F,AEm,AFn,EFd'(abc)a2b2|a||b|a,b2|b||c|,c2|c||a|c,a、l、l2c22abbcca2a2b2c2、、,则ll123123有1sinsinsin2.l2l21l2l232222222123123S'cos.S、'SSS和Vc和S,l斜棱柱侧斜棱柱11则①S②Vcl.斜棱柱侧1Sl.斜棱柱1VFE2E(1)nFEE1EnF;21mVmVEE.24VR3,3S4R.2,,66aaa.419教学资料(高中数学)祝同学们学习进步1VSh(Sh31VSh(Sh锥体3Nmmm.1)2nNmmm.12nn!A=n(n(nm=n,m*mnm(nm!n1.Amn(nm1)Am1;nnAmnA;mn1nmAmnnAm1n1;nAnnAAn1n1;nnAmAmAm1.mn1nn1!233!nn!(n1)!1.(n(nm!(nm!AnmC=m==*(n,mNmnnAm12mnmC=Cm;nmnnmmC+Cm1=C.nnn11Cn0.nm1CmnC;m1mnnCmnCm;nmn1nCmnCm;m1n1n2Crn=n;r0CrrCCCCr1n1.rrrr1r2nCCC0CCCC212.rnnnnnnnCCCCC2135024n1.nnnnnn2CCnCn2123nn1.nnnn20教学资料(高中数学)祝同学们学习进步CCr0CCCCCr110r.rrmnmnmnmn(C)(C)(C)(C)C0212222.nn2nnnnnAC.mmnnnm.(AAAAm1Amm1n11m1n1n1n1nAAA1m1m1n1.mn1(k(kmn)AA种.kmknkknkAnkA1knk1k、hkh1kAA种.hkh1h(mnAn当nm1nm1Cn.m1Annm1(mnCn.mn(1)()m、nmn(mnNCCnCnCC.nn2nn(!)mmnnmn2nn()mnm·CCnCnCC(mnnn2nnNn!(!)m.n2n!P(P=n+n++n)m(1到n,n,…,n件,且n,n,…,n这m个数彼此不相等,则其分配方法数共有2m12m12m!!NCCC!.npnn12mnnn!!...!p1nm12mP(P=n+n++n)m(12mn,nnn,nn这m、、12m12mCCC!p!m!nnn12mNn.ppn1mn!nnab!c12mP(P=n+n++n)n,nn(5)12m12m!的mn,nn这mN.!nn!12mn12mP(P=n+n++n)n,nn()非完全平均分组无归属问题12m12m记号的m堆,且n,n,…,n这m个数中分别有a、b、c、…个相等,则其分配方法数有12m21教学资料(高中数学)祝同学们学习进步!n!nn!(!N.12m(pn+n++nm(p12nnnn,nn等mm12312m!!!nnnNCCC.nnpnn12mpn1m12m信nn1111f(n)n![(1)]n.2!3!4!n!:nnmf(n,m)nC(n1)!C(nC(n3)!C(n4)!1234mmmm(1)C(np(1)C(nm)!ppmmmmCCCC1CpmApCmmAm234n(1)(m].m1mm2m4pAAAAn2nnnnnx+x++xm12nx+x++xmn,mNC(个.n112nm1x+x++xmn,mN(C.n112nnm1方程x+x++xmn,mN()xkkN2in1(,)的非负12niCn1个.(n2)(k1)m1x+x++xmn,mNxkkN2in1i方程()满足条件(,)的正整数解有12nCCCCC(1)CC个.n11n12n1n2n2n1nm1n2mnk2n2mn2k3n2m(n2)k(ab)CaCabCabCabCb0n1n12n22rnrrnn;nnnnnnTCab(r2,n).rnrrr1nmP().nn12n12n·AA12n12nkP(k)CP(1P).kknknn22教学资料(高中数学)祝同学们学习进步P0(i1,2,);iPP1.12xPxPxP1122nnE(b)aE)b.(,)np.~Bnp1若Pkg(k,p)qp)Ek1.p1pxEDxEpxEp222122nn=.;DabaD2(,)npp)~Bnp.q若P)(,)kgkpqpD.(3)k1p2.DEE2221fxxe,x(,2622612fx,x,e.2x26N(,2)xxFx.PxxxPxxPxx10221FxFx21xx21.nnxxyyxynxyiiiii1i1yab.nnxxxnx222iii1i1aybx23教学资料(高中数学)祝同学们学习进步nnxxyyxxyyiiiir.i1i1nnnn(xx)(yy)(xnx)(yny)222222iiiii1i1i1i10|q1limq1q1.nn|q或q10(kt)ananakakk1lim(kt).k10tbnbnbbtt1ntt10k不存在(kt)a1qanSlim1Sn1(|q1.aq1(1q1q1nlimf(x)alimf(x)limf(x)a.x0xxx00,,x0()g(x)f(x)h(x);()limg(x)a,limh(x)a,x0limf(x)ax0x0则.x.1lim0lim0|a1a()(),(nnnn11limxx,.0xxx0x00limsinx1;()xx01xlim1e…()xxlimf(x)alimg(x)b若,x0xx0fxgxab;x0fxgxab;x0fxab0.limgxbx024教学资料(高中数学)祝同学们学习进步若limaa,limbbnnnnlimabab;nnnlimabab;nnnaab0nbbnnlimcalimclimaca(cnnnfnn(x)在x0limylimxf(xx)f(x)()fxy.00x0x0x0x0sstt)st)tt0st)limlim..tt0vvtt)vt)tt0avt(x)(a,b)()limlimtt0f在dydf()limylimf(xx)f(x)xx0fxy.dxdxf(x)xx0yx0f(x)yf(x)(,())()yx在Pxfxfx0000yf(x)(xx)是y.000C0(x)nx(nQ).'n1nxx.xx.11(lnx(logalog;.xexxa(ee(aalna.;xxxx(uv)uv.'''(uv)uvuv'''.uu'vuv'()(v.'vv2(x)uxu(x)yfu)Uyfu()x''''xuyf((xxyyuf(x))fu(()x.''''''xuxxx111x1x1x1x;;n2n25教学资料(高中数学)祝同学们学习进步1(1x)1xR);1x;1xex1x;lx)x;nsinxxx(xxx(xxx(f(x)0xf(x)0xfx()0()0()fxfx0xfx0()0()0()fxfx00acac,bda,b,c,dR)zabi|z||a|ab.==22(abi)(cdi)(ac)(bdi;(abi)(cdi)(ac)(bd)i;(abi)(cdi)(bd)(ad)i;acbdbcad(abi)(cdi)i(cdi0).c2d2c2d2z,z,zC.123zzzz1221(zz)zz(zz).123123z(zz)zzzz.1231213d|zz(xx)(yy)(zxyi,zxyi22122121111222zabizcdi,,1122zzz|zz||z||z|22221212z12121|zz||z||z||zz|zz|0zizacbd2221212121212c0,2bb42b24ac0x;2abb40xx③若2;2a12b40C,它在实数集R内没有实数根;在复数集内有且仅有两个共轭复数根2bb4aci2xb4ac0).22a26教学资料(高中数学)祝同学们学习进步高中数学知识点总结如:集合Ax|ylgx,By|ylgx,C(x,y)|ylgx,A、B、C进行集合的交、并、补运算时,不要忘记集合本身和空集如:集合Ax|x2x30,Bx|ax12若B,则实数的值构成的集合为1,0,)3()集合a,a,……,a的所有子集的个数是2;n12n(2)若ABAB,AB;CCCCCCABABAB,ABUUUUUU27教学资料(高中数学)祝同学们学习进步如:已知关于x的不等式x2aax50的解集为M,若3且5M,求实数aa·353M02a53a,9,25)a·55∵52a05.可以判断真假的语句叫做命题,逻辑连接词有“或”(),“且”()和“非”().ppABBx4xy2x3(答:0,22,3,4)如:函数f(x)的定义域是a,b,ba0,则函数F(x)f(x)f(x)的定。(答:,a)如:fx1exx,求f(x).令tx,则t028教学资料(高中数学)祝同学们学习进步∴xt21f(t)e2t1t12∴f(x)e2x1x0x12、x01xx0f(x)x2x1x1(答:f(x))1xx0=x③设yf(x)的定义域为A,值域为C,aA,bC,则f(a)=bf(b)a1ff(a)f(b)ff(b)f(a)b111(yf(u),u(x),则yf(x)(外层)(内层)当内、外层函数单调性相同时f(x)为增函数,否则f(x)为减函数。)如:求ylogx2x的单调区间212(设ux2x,由u0则0x222且logu,ux1,如图:12uO12x29教学资料(高中数学)祝同学们学习进步当x(0时,u,又logu,∴y12当x,2)时,u,又logu,∴y12bf'(x)0f(x)f'(x)0a0f(x)x3在,0)123aaf'(x)2axx033aa则x或x33a由已知f(x),)3,即a3a)若f(x)f(x)f(x)若f(x)f(x)f(x)函数图象关于y(2)若是奇函数且定义域中有原点,则0。a·2a2x如:若f(x)为奇函数,则实数a21x(∵f(x)为奇函数,x0,∴f(0)0a·2a20即0,∴a)20130祝同学们学习进步2x,2x(令x,0x01,f(x)2x2xxx)xTfxaf(x)(答:f(x)是周期函数,T2a为f(x)又如:若f(x)图象有两条对称轴xa,xbf(x)f(x)轴教学资料(高中数学)祝同学们学习进步f(x)与f(x)轴f(x)与f(x)f(x)与f(x)的图象关于直线yx对称1f(x)f(2ax)xaf(x)与f(2ax)点(a,yf(xa)左移a(a个单位将yf(x)图象yf(xa)右移a(a个单位yf(xa)byf(xa)b上移b(b个单位下移b(b个单位f(x)f(x)f(x)f(|x|)如:f(x)logx12yx1yx122yxO1xyOx32教学资料(高中数学)祝同学们学习进步()一次函数:ykxbk0kkk0是中心O'(a,b)(2)反比例函数:yk0推广为ybxxab4acb22()二次函数yaxbxca0ax图象为抛物线22a4ab4acb2,对称轴xb顶点坐标为,2a4a2a4acb2开口方向:a0,向上,函数y4a4acb2a0,向下,y4aaxbxc0,0时,两根x、x为二次函数yaxbxc的图象与x轴2212的两个交点,也是二次不等式axbxc0(0)解集的端点值。20b如:二次方程ax2bxc0的两根都大于kk2af(k)0yOxkkf(k)0(4yaa0a1xyxa0a1a33教学资料(高中数学)祝同学们学习进步yx1axk(6)“对勾函数”yxk0xyOkxa1(aa1(a0pap1mmnaa(aa(anmnnam对数运算:NMNM0N0aaaMN1loglogMlog,logMlogMnnaaaaa对数恒等式:alogaxxbnbbbcnammaaac)x,f(x)满足f(xy)f(x)f(y),证明f(x)(先令xy0f(0)0再令yx34教学资料(高中数学)祝同学们学习进步(2)x,f(x)满足f(xy)f(x)f(y),证明f(x)(先令xytf(t)(t)f(t·t)f(t)f(t)f(t)f(t)∴f(t)f(t)()证明单调性:f(x)fxxx……2212()y2x3134x2x4(2yx3()x,y2x2x3(4)yx49x2设x3cos,0,9(y4xx(0xR11(l,SlR·R)2扇22R1ORsin,,tan35祝同学们学习进步yBSTPαAxOM8又如:求函数y12cosx的定义域和值域。44教学资料(高中数学)祝同学们学习进步yytgxxO22k,0,kZ2ysinx的增区间为2k,2kkZ22减区间为2k,2kkZ22k,0xkkZ2ycosx的增区间为2k,2kkZ减区间为2k,2k2kZ图象的对称点为k,0,对称轴为xkkZ22yxk,kkZ2y=x+或yAx)振幅|A|,周期T2||若fxA,则xx为对称轴。00fx0x,000(2)五点作图:令x依次为0,,,,2,求出x与y,依点22(37祝同学们学习进步()根据图象求解析式。(求、、1如图列出22yAx,T||2,求x值。6227x,∴x,∴x)6364121326)点(xy)P'x',y'),则平移至44教学资料(高中数学)祝同学们学习进步42sinx1y2sinx1y2sinx41倍2ysinx)1sincossectantan·cotcos·sectan22224sincos0的代换。2“k·”化为的三角函数——“奇变,偶不变,符号看象限”,2k9764又如:函数ysintan,则y的值为coscotsinsin2sincos1coscos(y0,∵0)cossin12cossin令22令2222112sin221·1222tan2122tan21tan22basinbcosabsin,tan22a2439教学资料(高中数学)祝同学们学习进步323,222sincos2,tan,求tan2的值。如:已知1cos23sincoscos12(由已知得:,∴tan2sin2sin22又tan3211tan·tantantan1)83221∴tan2tan1·32bca222余弦定理:abc2bccosAA2222bca2RsinAabc2Rb2RsinBsinAsinBsinCc2RsinC1SbsinC2∵ABC,∴ABCABC∴sinABsinC,sincos22AB如中,2sin2cos2C12)求角;c2(2)若ab2A2B22240教学资料(高中数学)祝同学们学习进步(()由已知式得:1cosAB2cos2C11又AB22CC101∴cosC或cosC(舍)2又0C,∴C31(2)由正弦定理及abc得:222232sinA2sinBsinCsin222234341cos2A1cos2B3∴cos2Acos2B)4x,,x122反余弦:0x1x,,xR22c0c0)ab,(2)abcdacbd()ab0,cd01111(4ab0ab0abab()ab0ab,abnnnn(6)|x|aa0axa,|x|axa或xa11如:若0,则下列结论不正确的是()abA.ababb222ab2ba|a||b||a41教学资料(高中数学)祝同学们学习进步Cab2ab2aba,bR;ab2ab;ab求最值时,你是否注222意到“a,bR”且“等号成立”时的条件,积(ab)或和(ab)其中之一为定a2b2abab2aba,bRab22当且仅当aabcbR222当且仅当abab0m0,n0bbmana1aambnb4如:若x0,2的最大值为x4x(设y2222434233,又x0,∴x时,y24)xmax又如:x2y,则24的最小值为xy(∵222222,∴最小值为22)x2yx2y1111…2231n2221112311n21111223n1n2242祝同学们学习进步11111223111nf(x)aa0x23如:x1x1x2012会用不等式|a|||a|a||b|2|f(x)f(a)||(xx(aa22教学资料(高中数学)如:af(x)af(x)af(x)af(x)af(x)af(x)祝同学们学习进步x3x2(设ux3x2,它表示数轴上到两定点2和距离之和u32,∴5a,即a5x3x2x3x2a)定义:aad(d为常数),aan1dn1nn1等差中项:x,A,y成等差数列2Axyaannn1前n项和Sd1n22n1性质:a是等差数列nmnpaaaa;mnpq(2)数列a,a,kab仍为等差数列;2n12nnS,SS,SS……仍为等差数列;n2nn3n2n()若三个数成等差数列,可设为ad,a,ad;aS(4)若a,b是等差数列S,T为前n;m2m12m1bTnnnnm()a为等差数列Sanbn(a,b为常数,是关于n的常数项为2nn0S的最值可求二次函数Sanbn的最值;或者求出a中的正、负分界2nnna0当a0,d0,解不等式组可得S达到最大值时的n值。na01nn144教学资料(高中数学)祝同学们学习进步a0当a0,d0,由可得S达到最小值时的n值。na01nn1如:等差数列a,S18,aaa,S,则nnnnn1n23(由aaa33,∴a1nn1n2n1n1aa13又S·3,∴a13232211naanaa·n3∴S1n2n1222nn27)aqq为常数,q0aaqn1n1an1nGG2na(q1前n项和:Sa1q(要注意!)nn1(q1q性质:a是等比数列nmnpaaaamnpq(2)S,SS,SS……仍为等比数列n2nn3n2n45.由S求a时应注意什么?nn(n时,aS,n2时,aSS)11nnn1111如:a满足aa……a2n5122122n12n2nn时,a21,∴a14211111n2时,aa……a2n15222n112n1245教学资料(高中数学)祝同学们学习进步112得:a22nn∴a2n1n14(n∴a2n1(n2)n5数列aSSa,a4,求a3nnn1n11nS(注意到aSS4n1Sn1n1nn又S4,∴S是等比数列,S4n1nnn2时,aSS……·4n1nnn1anaa,an1an1n1nnaaaa12n1a1n·3·21nnaa23na2n113naa1n由aaf(n),aa,求a,用迭加法nn110nn2aaf(2)21aaf两边相加,得:32…………aaf(n)nn1aaf(2)f(3)……f(n)n1∴aaf(2)f(3)……f(n)n0n2,求a数列a,a,a3an1n1nn1n1(a31)n2n46教学资料(高中数学)祝同学们学习进步acadcd为常数,c0,c,d0nn1可转化为等比数列,设axcaxnn1acac1xnn1d令(cd,∴xc1dd∴a是首项为a,cc1c1n1ddc∴aacn1c1n1ddaacn1cc1n1数列a满足a9,a4,求an1n1nn4n13(a8)n2a例如:aa,求ana21n1nn1a211na2a2an1nn111∴aa2n1n1112为等差数列,,公差为aan11111n1·n1a22n2ann1n47教学资料(高中数学)祝同学们学习进步1na是公差为daank1kk111111d0由ak1a·aaaddakk1kkk1111nn∴adaaak1kk1k1kk11111111……daaaaaa1223nn1111daa1n1111112123123n1(a…………,S2)n1nn若a为等差数列,b为等比数列,求数列ab(差比数列)前n项nnnn和,可由SqS求S,其中q为b的公比。nnnn如:S12x4x……nx123n1nx·Sx2x4x……n1xnx2234n1nn12:1xS1xx……xnx2n1nn1xnnxnxS21xn1xnn1x时,S123nn2Saaaan12n1nSaaaannn1212Saaaa……aa……n1n2n11n48教学资料(高中数学)祝同学们学习进步x2121314已知f(x),则ff(2)ffff(4)f1x21x21x2x21(由f(x)f1x1x1x1x1x2222111123∴原式ff(2)ffff(4)f4111113)22pnnn1Sp1rp12r……p1nrpnr……等差问题n2pnxn1n2x1r……x1rxr)x1rnnn11r1r1xx11rrn1rxn1r1()分类计数原理:Nmm……m12n(m为各类办法中的方法数)i分步计数原理:Nm·m……m12n(m为各步骤中的方法数)i(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为A.mn49祝同学们学习进步n!Ann1n2nm1mn(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不mnn……nmAACC,CCC,CC……C2ni1234)1234nn2rnnnrC为二项式系数(区别于该项的系数)50教学资料(高中数学)祝同学们学习进步r0,2,……,n)对称性:CCrnnrn(2)系数和:CC…C20n1nnnnCCC…CCC…21n3n5n0n2n4nn1n+1nn1项,二项式系数为C;n为奇数时,(n为偶数,中间两项的二项式2n2n1n1n1n1CC22n22n11如:在二项式x1的展开式中,系数最小的项系数为(用数字1212项,中间两项系数的绝对值最大,且为第6或第7项2由Cx(,∴取r即第6项系数为负值为最小:rrrCC426652004又如:12xxR,则aaxax……ax220040122004aaaaaa……aa(用数字作答)01020302004(令x0,得:a10令x,得:aa……a1022003112004)∴原式aa……a0012004()必然事件,P),不可能事件,P()0(2)包含关系:A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (二模)2024~2025学年度苏锡常镇四市高三教学情况调研(二)物理试卷(含答案)
- 2025至2031年中国特制蜂蜜花生香料行业投资前景及策略咨询研究报告
- 新质生产力中国装饰
- 小班快乐阅读活动安排计划
- 失读的临床护理
- 遗传性视网膜劈裂症的临床护理
- 教学评价中的定量与定性计划
- 炎黄职业技术学院《专业日语》2023-2024学年第一学期期末试卷
- 多样化的班级学习活动计划
- 教育政策与法规学习活动计划
- 2025年高考语文作文预测52篇(含范文)
- 福建省龙岩市一级校2024-2025学年高二下学期4月期中联考 数学试题(含答案)
- 2025年街道全面加强乡村治理工作实施方案
- 明股实债协议合同
- 2025“十五五”金融规划研究白皮书
- 四川省绵阳市游仙区富乐实验中学2023-2024学年七年级下学期期中考试数学试卷(含答案)
- 浙江省杭州市2024年中考英语真题(含答案)
- Mysql 8.0 OCP 1Z0-908 CN-total认证备考题库(含答案)
- 大众速腾2009年型电路图
- 混凝土静力抗压弹性模量试验记录表
- 中考讲座化学中考失分分析及教学对策ppt课件
评论
0/150
提交评论