福建省福州十八中学2022年数学八上期末复习检测试题含解析_第1页
福建省福州十八中学2022年数学八上期末复习检测试题含解析_第2页
福建省福州十八中学2022年数学八上期末复习检测试题含解析_第3页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若分式在实数范围内有意义,则的取值范围为()A. B. C. D.且2.如图,已知∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需加上条件()A.AD=BC B.BD=AC C.∠D=∠C D.OA=OB3.已知xm=6,xn=3,则x2m―n的值为(

)A.9 B. C.12 D.4.如图所示,直角三边形三边上的半圆面积从小到大依次记为、、,则、、的关系是()A. B. C. D.5.如图,的周长为,分别以为圆心,以大于的长为半径画圆弧,两弧交于点,直线与边交于点,与边交于点,连接,的周长为,则的长为()A. B. C. D.6.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;②三角形的一个外角大于任何一个内角;③如果和是对顶角,那么;④若,则.A.1个 B.2个 C.3个 D.4个7.已知中,是的2倍,比大,则等于()A. B. C. D.8.如图,在一单位长度为的方格纸上,依如所示的规律,设定点、、、、、、、,连接点、、组成三角形,记为,连接、、组成三角形,记为,连、、组成三角形,记为(为正整数),请你推断,当为时,的面积()A. B. C. D.9.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.1010.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是()秒A.2.5 B.3 C.3.5 D.411.下列多项式中,能分解因式的是()A. B. C. D.12.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来()A.SAS B.ASA C.AAS D.SSS二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知点A(2,-2),在坐标轴上确定一点B,使得△AOB是等腰三角形,则符合条件的点B共有________个.14.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_______.(只需填一个即可)15.已知﹣=3,则分式的值为_____.16.(x2y﹣xy2)÷xy=_____.17.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.18.若关于的方程的解不小于,则的取值范围是_______.三、解答题(共78分)19.(8分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.20.(8分)已知:如图,等腰三角形中,,等腰三角形中,,点在上,连接.求证:.21.(8分)数学课上,张老师出示了如下框中的题目.已知,在中,,,点为的中点,点和点分别是边和上的点,且始终满足,试确定与的大小关系.小明与同桌小聪讨论后,进行了如下解答:(1)(特殊情况,探索结论)如图1,若点与点重合时,点与点重合,容易得到与的大小关系.请你直接写出结论:____________(填“”,“”或“”).(2)(特例启发,解答题目)如图2,若点不与点重合时,与的大小关系是:_________(填“”,“”或“”).理由如下:连结,(请你完成剩下的解答过程)(3)(拓展结论,设计新题)在中,,点为的中点,点和点分别是直线和直线上的点,且始终满足,若,,求的长.(请你直接写出结果)22.(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与直线交于点,点是轴上的一个动点,设.(1)若的值最小,求的值;(2)若直线将分割成两个等腰三角形,请求出的值,并说明理由.23.(10分)在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则根据材料回答问题:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.24.(10分)某地长途汽车公司规定旅客可随身携带一定质量的行李,如果超过规定质量,则需要购买行李票,行李票元是行李质量的一次函数,如图所示:(1)求与之间的表达式(2)求旅客最多可免费携带行李的质量是多少?25.(12分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.26.如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证△ACD≌△BFD(2)求证:BF=2AE;(3)若CD=,求AD的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据分式意义的条件即可求出答案.【详解】解:x-3≠0,

∴x≠3

故答案为x≠3【点睛】本题考查分式有意义的条件,解题的关键正确理解分母不为0是分式有意义的条件,本题属于基础题型.2、B【分析】根据SAS是指两边及夹角相等进行解答即可.【详解】解:已知∠1=∠2,AB=AB,根据SAS判定定理可知需添加BD=AC,故选B【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、C【解析】试题解析:试题解析:∵xm=6,xn=3,∴x2m-n==36÷3=12.故选C.4、A【分析】设三个半圆的直径分别为:d1、d2、d1,半圆的面积=π×()2,将d1、d2、d1代入分别求出S1、S2、S1,由勾股定理可得:d12+d22=d12,观察三者的关系即可.【详解】解:设三个半圆的直径分别为:d1、d2、d1,S1=×π×()2=,S2=×π×()2=,S1=×π×()2=.由勾股定理可得:d12+d22=d12,∴S1+S2=(d12+d22)==S1,所以S1、S2、S1的关系是:S1+S2=S1.故选A.【点睛】本题主要考查运用勾股定理结合图形求面积之间的关系,关键在于根据题意找出直角三角形,运用勾股定理求出三个半圆的直径之间的关系.5、A【分析】将△GBC的周长转化为BC+AC,再根据△ABC的周长得出AB的长,由作图过程可知DE为AB的垂直平分线,即可得出BF的长.【详解】解:由作图过程可知:DE垂直平分AB,∴BF=AB,BG=AG,又∵△GBC的周长为14,则BC+BG+GC=BC+AC=14,∴AB=26-BC-AC=12,∴BF=AB=6.故选A.【点睛】本题考查了作图-垂直平分线,垂直平分线的性质,三角形的周长,解题的关键是△GBC的周长转化为BC+AC的长,突出了“转化思想”.6、A【分析】逐一对选项进行分析即可.【详解】①两条直线被第三条直线所截,内错角不一定相等,故错误;②三角形的一个外角大于任何与它不相邻的两个内角,故错误;③如果和是对顶角,那么,故正确;④若,则或,故错误.所以只有一个真命题.故选:A.【点睛】本题主要考查真假命题,会判断命题的真假是解题的关键.7、B【分析】设,则可表示出来,然后利用三角形内角和定理即可求出的度数.【详解】设,则根据三角形内角和定理得,解得故选:B.【点睛】本题主要考查三角形内角和定理,掌握三角形内角和定理是解题的关键.8、A【分析】根据图形计算发现:第一个三角形的面积是,第二个三角形的面积是,第三个图形的面积是,即第个图形的面积是,即可求得,△的面积.【详解】由题意可得规律:第个图形的面积是,所以当为时,的面积.故选:A.【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.9、C【解析】试题分析:根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.解:∵正n边形的一个内角为135°,∴正n边形的一个外角为110°﹣135°=45°,n=360°÷45°=1.故选C.考点:多边形内角与外角.10、D【详解】解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=1.故选D.【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.11、D【分析】根据因式分解的各个方法逐一判断即可.【详解】解:A.不能因式分解,故本选项不符合题意;B.不能因式分解,故本选项不符合题意;C.不能因式分解,故本选项不符合题意;D.,能因式分解,故本选项符合题意.故选D.【点睛】此题考查的是因式分解,掌握因式分解的各个方法是解决此题的关键.12、D【解析】试题解析:在△ADC和△ABC中,

∴△ADC≌△ABC(SSS),

∴∠DAC=∠BAC,

即∠QAE=∠PAE.

故选D.二、填空题(每题4分,共24分)13、1【分析】OA是等腰三角形的一边,确定第三点B,可以分OA是腰和底边两种情况进行讨论即可.【详解】(1)若AO作为腰时,有两种情况,当A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,共有2个(除O点);当O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,有4个;(2)若OA是底边时,B是OA的中垂线与坐标轴的交点,有2个.以上1个交点没有重合的.故符合条件的点有1个.故答案为:1.【点睛】本题考查了坐标与图形的性质和等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底,哪边是腰时,应在符合三角形三边关系的前提下分类讨论.14、∠A=∠F(答案不唯一)【详解】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加夹角∠A=∠F,利用SAS可证全等;或添加AC∥EF得夹角∠A=∠F,利用SAS可证全等;或添加BC=DE,利用SSS可证全等.15、【分析】由已知条件可知xy≠1,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把代入即可.【详解】解:∵∴x≠1,y≠1,∴xy≠1.故答案为.【点睛】本题主要考查了分式的基本性质及求分式的值的方法,把作为一个整体代入,可使运算简便.16、9x﹣4y+1【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式==9x﹣4y+1.故答案为:9x﹣4y+1.【点睛】本题考查了整式的除法运算,解题关键是正确掌握相关运算法则.17、17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m,则弦为m+1,所以有,解得,,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.18、m≥-8且m≠-6【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+9≥1且m+9≠3解得m≥-8且m≠-6.故答案为:m≥-8且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.三、解答题(共78分)19、(1)见解析;(2)50;(3)1.【分析】(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,证明△ABF≌△ADE、△ABO≌△DAG,得到D点的坐标为(4,﹣3),根据三角形的面积公式计算;(3)作EH⊥BC于点H,作EG⊥x轴于点G,根据角平分线的性质得到EH=EG,证明△EBH≌△EOG,得到EB=EO,根据等腰三角形的判定定理解答.【详解】(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,如图1∵B(0,1),C(1,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(AAS),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,1),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,如图2∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=61.5°,又∠OBC=45°,∴∠BOE=∠BFO=61.5°,∴BF=BO=1.【点睛】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.20、证明见解析【分析】根据等腰三角形的性质证明即可求解.【详解】由题意:,,,又,∴,∴,,∴,即.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的性质、全等三角形的判定与性质.21、(1)=;(2)=,理由见解析;(1)1或1【分析】(1)根据等直角三角形斜边的中线等于斜边的一半解答即可;(2)连结,证明△BDE≌△ADF即可;(1)分四种情况求解:①当点E在BA的延长线上,点F在AC的延长线上;②当点E在AB的延长线上,点F在CA的延长线上;③当点E在AB的延长线上,点F在AC的延长线上;④当点E在BA的延长线上,点F在CA的延长线上.【详解】(1)∵,,∴∠ACD=45°.∵,点为的中点,∴∠CAD=45°,∴∠CAD=∠ACD,∴AD=CD,即DE=DF;(2)连结,∵,点为的中点,∴AD==BD.∵,,点为的中点,∴∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,∴∠ADE+∠BDE=90°.∵DE⊥DF,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,∵∠B=∠CAD=45°,AD=BD,∠BDE=∠ADF,∴△BDE≌△ADF,∴DE=DF;(1)①当点E在BA的延长线上,点F在AC的延长线上,如图1,由(2)知,AD=CD,∠CAD=∠ACB=45°,∴∠DAE=∠DCE=115°.∵DE⊥DF,E⊥DF,∴∠CDE+∠CDF=90°,∠ADE+∠CDE=90°,∴∠CDF=∠ADE,在△ADE和△CDF中,∵∠DAE=∠DCE,AD=CD,∠ADE=∠CDF,∴△ADE≌△CDF,∴CF=AE,∵BE=2,,AB=1,∴CF=AE=2-1=1;②当点E在AB的延长线上,点F在CA的延长线上,如图2,与①同理可证△ADF≌△BDE,∴AF=BE=2,∵AC=1,∴CF=2+1=1;③当点E在AB的延长线上,点F在AC的延长线上,如图1,连接AD,并延长交EF与H,∵∠5=∠1+∠1,∠6=∠2+∠4,∴∠5+∠6=∠1+∠1+∠2+∠4,∵∠1+∠2=90°,∠5+∠6=90°,∴∠1+∠4=0°,不合题意,此种情况不成立;④当点E在BA的延长线上,点F在CA的延长线上,如图4,同③的方法可说明此种情况也不成立.综上可知,CF的长是1或1.【点睛】本题主要考查了等腰直角三角形的性质,三角形外角的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22、(1);(2)5,理由见解析【分析】(1)先求出点A点B的坐标,根据轴对称最短确定出点M的位置,然后根据待定系数法求出直线AD的解析式,进而可求出m的值;(3)分三种情况讨论验证即可.【详解】解:(1)解得,∴A(4,2).把y=0代入得,解得x=5,∴B(5,0),取B关于y轴的对称点D(-5,0),连接AD,交y轴于点M,连接BM,则此时MB+MA=AD的值最小.设直线AD的解析式为y=kx+b,∵A(4,2),D(-5,0),∴,解得,∴,当x=0时,,∴m=;(2)当x=0时,,∴C(0,10),∵A(4,2),∴AC=,AO=.如图1,当MO=MA=m时,则CM=10-m,由10-m=m,得m=5,∴当m=5时,直线将分割成两个等腰三角形;如图2,当AM=AO=时,则My=2Ay=4,∴M(0,4),CM=6,此时CM≠AM,不合题意,舍去;如图3,当OM=AO=时,则CM=10-,AM=,∴CM≠AM,不合题意,舍去;综上可知,m=5时,直线将分割成两个等腰三角形.【点睛】本题考查了待定系数法求一次函数解析式,一次函数与坐标轴的交点,等腰三角形的性质,勾股定理以及分类讨论的数学思想.根据轴对称的性质确定出点M的位置是解(1)的关键,分类讨论是解(2)的关键.23、(1)5;(2);(3)【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照材料二,设===k(k≠0),则a=5k,b=2k,c=3k,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设===(k≠0),化简得:①,②,③,相加变形可得x、y、z的代入=中,可得k的值,从而得结论;解法二:取倒数得:==,拆项得,从而得x=,z=,代入已知可得结论.【详解】解:(1)∵=,∴=4,∴x﹣1+=4,∴x+=5;(2)∵设===k(k≠0),则a=5k,b=2k,c=3k,∴===;(3)解法一:设===(k≠0),∴①,②,③,①+②+③得:2()=3k,=k④,④﹣①得:=k,④﹣②得:,④﹣③得:k,∴x=,y=,z=代入=中,得:=,,k=4,∴x=,y=,z=,∴xyz===;解法二:∵,∴,∴,∴,∴,将其代入中得:==,y=,∴x=,z==,∴xyz==.【点睛】本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子.24、(1);(2)旅客最多可免费携带行李的质量是.【分析】(1)由图,已知两点,可根据待定系数法列方程,求函数关系式;

(2)旅客可免费携带行李,即y=0,代入由(1)求得的函数关系式,即可知质量为多少.【详解】解:(1)设与之间的表达式为,把代入,得:,解方程组,得与之间的表达式为.(2)当时,,旅客最多可免费携带行李的质量是.【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.25、(1)详见解析;(2)详见解析.【分析】(1)直接利用勾股定理结合网格得出符合题意的图形,(2)直接利用勾股定理结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论