湖北省黄石市新建初级中学2022-2023学年数学八年级第一学期期末教学质量检测模拟试题含解析_第1页
湖北省黄石市新建初级中学2022-2023学年数学八年级第一学期期末教学质量检测模拟试题含解析_第2页
湖北省黄石市新建初级中学2022-2023学年数学八年级第一学期期末教学质量检测模拟试题含解析_第3页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若分式的值为0,则x的值为A.3 B. C.3或 D.02.太原市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足10000元,则这个小区的住户数()A.至少20户 B.至多20户 C.至少21户 D.至多21户3.若,,,,则它们的大小关系是()A. B. C. D.4.下列各点在函数图象上的是()A. B. C. D.5.下列分解因式正确的是()A. B.C. D.6.设是三角形的三边长,且满足,关于此三角形的形状有以下判断:①是直角三角形;②是等边三角形;③是锐角三角形;④是钝角三角形,其中正确的说法的个数有()A.1个 B.2个 C.3个 D.4个7.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AB和AD,点A B.AB和AC,点BC.AC和BC,点C D.AD和BC,点D8.小意是一位密码翻译爱好者,在她的密码手册中,有这样一条信息:,,,,,分别对应下列六个字:泗、我、大、美、爱、水,现将因式分解,结果呈现的密码信息可能是()A.我爱美 B.我爱水 C.我爱泗水 D.大美泗水9.已知a=2−2,b=A.a>b>c B.b>a>c C.c>a>b D.b>c>a10.A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确的个数是()①甲骑车速度为30km/小时,乙的速度为20km/小时;②l1的函数表达式为y=80﹣30x;③l2的函数表达式为y=20x;④85A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.若等腰三角形的两边长为3和7,则该等腰三角形的周长为__________.12.如图所示,直线、的交点坐标是___________,它可以看作方程组____________的解.13.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是______.14.如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为_____cm时,线段CQ+PQ的和为最小.15.如图,点O为等腰三角形ABC底边BC的中点,,,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.16.______________.17.已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是____________.18.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,…按上述规律,回答以下问题:(1)请写出第n个等式:an=__________.(2)a1+a2+a3+…+an=_________三、解答题(共66分)19.(10分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.20.(6分)如图,在平面直角坐标系中,(1)作出关于轴对称的;(2)在轴上找出一个点,使点到、两点的距离相等.21.(6分)如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在网格线的交点上,点B关于y轴的对称点的坐标为(2,0),点C关于x轴的对称点的坐标为(﹣1,﹣2).(1)根据上述条件,在网格中建立平面直角坐标系xOy;(2)画出△ABC分别关于y轴的对称图形△A1B1C1;(3)写出点A关于x轴的对称点的坐标.22.(8分)已知,如图,在中,是的中点,于点,于点,且.求证.完成下面的证明过程:证明:∵,(______)∴(______)∵是的中点∴又∵∴(______)∴(______)∴(______)23.(8分)如图,AB∥CD,△EFG的顶点E,F分别落在直线AB,CD上,FG平分∠CFE交AB于点H.若∠GEF=70°,∠G=45°,求∠AEG的度数24.(8分)如图,∠A=∠D,要使△ABC≌△DBC,还需要补充一个条件:_____(填一个即可).25.(10分)(1)计算:;(2)先化简,再求值:,其中a=﹣2,b=.26.(10分)定义:如果一个数的平方等于,记为,那么这个数叫做虚数单位,和我们所学的实数对应起来的数就叫做复数,表示为(为实数),叫做这个复数的实部,叫做这个复数的虚部,复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如,计算:(1)填空:_______,_______;(2)计算:

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据分式的值为零的条件可以求出x的值.【详解】由分式的值为零的条件得x-1=2,且x+1≠2,解得x=1.故选A.【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.2、C【分析】根据“x户居民按1000元计算总费用>整体初装费+500x”列不等式求解即可.【详解】解:设这个小区的住户数为户.则,解得是整数,这个小区的住户数至少1户.故选:C,【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式即可求解.注意本题中的住户数是整数,所以在x>20的情况下,至少取1.3、A【分析】先按法则把a,c,b,d计算结果,比较这些数的大小,再按从小到大的顺序,把a,c,b,d排序即可.【详解】=-0.04,,,=1,-4<-0.04<1<4,b<a<d<c.故选择:A.【点睛】本题考查乘方的运算,掌握乘方的性质,能根据运算的结果比较大小,并按要求排序是解决问题的关键.4、A【分析】依据函数图像上点的坐标满足解析式可得答案.【详解】解:把代入解析式得:符合题意,而,,均不满足解析式,所以不符合题意.故选A.【点睛】本题考查的是图像上点的坐标满足解析式,反之,坐标满足解析式的点在函数图像上,掌握此知识是解题的关键.5、C【分析】根据因式分解定义逐项分析即可;【详解】A.等式两边不成立,故错误;B.原式=,故错误;C.正确;D.原式=,故错误;故答案选C.【点睛】本题主要考查了因式分解的判断,准确应用公式是解题的关键.6、B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出.进而判断即可.【详解】∵,

∴,

即,

∴,

∴此三角形为等边三角形,同时也是锐角三角形.

故选:B.【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.7、D【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【详解】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:D.【点睛】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.8、D【分析】先提取公因式,再利用平方差公式:进行因式分解,然后根据密码手册即可得.【详解】由密码手册得,可能的四个字分别为:美、大、水、泗观察四个选项,只有D选项符合故选:D.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,因式分解的方法主要包括:提取公因式法、公式法、十字相乘法、换元法等,熟记各方法是解题关键.9、B【解析】先根据幂的运算法则进行计算,再比较实数的大小即可.【详解】a=2b=π−2c=−11>1故选:B.【点睛】此题主要考查幂的运算,准确进行计算是解题的关键.10、D【解析】根据速度=路程÷时间,即可求出两人的速度,利用待定系数法求出一次函数和正比例函数解析式即可判定②③正确,利用方程组求出交点的横坐标即可判断④正确.【详解】解:甲骑车速度为80-501=30km/小时,乙的速度为603=20km/小时,故①设l1的表达式为y=kx+b,把(0,80),(1,50)代入得到:b=80k+b=50解得k=-30b=80∴直线l1的解析式为y=﹣30x+80,故②正确;设直线l2的解析式为y=k′x,把(3,60)代入得到k′=20,∴直线l2的解析式为y=20x,故③正确;由y=﹣30x+80y=20x,解得∴85小时后两人相遇,故④正确正确的个数是4个.故选:D.【点睛】本题考查一次函数的应用,速度、时间、路程之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每小题3分,共24分)11、17【分析】有两种情况:①腰长为3,底边长为7;②腰长为7,底边长为3,分别讨论计算即可.【详解】①腰长为3,底边长为7时,3+3<7,不能构成三角形,故舍去;②腰长为7,底边长为3时,周长=7+7+3=17.故答案为17.【点睛】本题考查等腰三角形的性质,当腰和底不明确的时候,需要分类讨论,并利用三边关系舍去不符合题意的情况.12、(2,2)【分析】根据一次函数的图象与待定系数法,即可求解.【详解】有函数图象,可知:直线、的交点坐标是(2,2);设直线的解析式:y=kx+b,把点(2,2),(0,1)代入y=kx+b,得,解得:,∴直线的解析式:,同理:直线的解析式:,∴直线、的交点坐标可以看作的解.故答案是:(2,2);.【点睛】本题主要考查一次函数的图象的交点坐标与二元一次方程组的解的关系,掌握待定系数法,是解题的关键.13、三角形具有稳定性【分析】三角形具有稳定性,其它多边形具有不稳定性,故需在门上钉上一条斜拉的木条.【详解】解:为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是:三角形具有稳定性故答案为:三角形具有稳定性.【点睛】此题考查的是三角形具有稳定性的应用,掌握三角形具有稳定性,其它多边形具有不稳定性是解决此题的关键.14、1.【分析】连接AQ,依据等边三角形的性质,即可得到CQ=AQ,依据当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,即可得到BP的长.【详解】如图,连接AQ,∵等边△ABC中,BD为AC边上的中线,∴BD垂直平分AC,∴CQ=AQ,∴CQ+PQ=AQ+PQ,∴当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,此时,P为BC的中点,又∵等边△ABC的周长为18cm,∴BP=BC=×6=1cm,故答案为1.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.15、1.【分析】连接AO,由于△ABC是等腰三角形,点O是BC边的中点,故AO⊥BC,再根据勾股定理求出AO的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AO的长为CP+PO的最小值,由此即可得出结论.【详解】连接AO,

∵△ABC是等腰三角形,点O是BC边的中点,

∴AO⊥BC,∴,∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AO的长为CP+PO的最小值,∴△OPC周长的最小值.故答案为:1.【点睛】本题考查的是轴对称-最短路线问题以及勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.16、【分析】根据零指数幂和负整数指数幂分别化简,再相乘.【详解】解:,故答案为:.【点睛】本题考查了有理数的乘法运算,涉及到零指数幂和负整数指数幂,解题的关键是掌握零指数幂和负整数指数幂的计算方法.17、【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组,即是当代入方程组之后的方程组,则也是这一方程组的解,所以,∴.故答案是.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.18、【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,……∴第n个等式:;故答案为:;(2)==;故答案为:.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题三、解答题(共66分)19、(1)∠BAC关于∠ABC的平分线所在直线a对称,见解析;(2)见解析;(3)其中一条线段作2次的轴对称即可使它们重合,见解析【分析】(1)作∠ABC的平分线所在直线a即可;(2)先连接AC;作线段AC的垂直平分线,即为对称轴b;作点B关于直线b的对称点D;连接CD即为所求.(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.【详解】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.【点睛】本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.20、(1)见解析;(2)见解析.【分析】(1)根据轴对称的关系即可画图;(2)作线段AB的垂直平分线,与x轴的交点即为点P.【详解】(1)如图:(2)如图:【点睛】此题考查画图,正确掌握轴对称图形的特点,线段垂直平分线的确定方法是解题的关键.21、(1)详见解析;(2)详见解析;(3)(-4,-4).【分析】(1)依据点B关于y轴的对称点坐标为(2,0),点C关于x轴的对称点坐标为(-1,-2),即可得到坐标轴的位置;(2)依据轴对称的性质,即可得到△ABC分别关于y轴的对称图形△A1B1C1;(3)依据关于x轴的对称点的横坐标相同,纵坐标互为相反数,即可得到点A关于x轴的对称点的坐标.【详解】解:(1)如图所示,建立平面直角坐标系xOy.(2)如图所示,△A1B1C1即为所求;(3)A点关于x轴的对称点的横坐标相同,纵坐标互为相反数,所以点A(-4,4)关于x轴的对称点的坐标(-4,-4).【点睛】本题主要考查作图−轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.22、见解析【分析】根据题意,找出证明三角形全等的条件,利用HL证明Rt△BDE≌Rt△CDF,即可得到结论成立.【详解】解:∵DE⊥AB,DF⊥AC(已知)∴∠BED=∠CFD=90°(垂直的定义)∵D是BC的中点,∴BD=CD,又∵BE=CF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论