




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1如果两个相似三角形的面积比是1:4,那么它们的周长比是A1:16B1:6C1:4D1:22如图,点E是正方形ABCD的边DC上一点,把ADE绕点A顺时针旋转90到ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()AB5C8D43平面直角
2、坐标系内,已知线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,则端点的坐标为()A(4,4)B(4,4)或(-4,-4)C(6,2)D(6,2)或(-6,-2)4对于非零实数,规定,若,则的值为ABCD5下列汽车标志中既是轴对称图形又是中心对称图形的是( )ABCD6如图所示,APB30,O为PA上一点,且PO6,以点O为圆心,半径为3的圆与PB的位置关系是()A相离B相切C相交D相切、相离或相交7的绝对值是ABC2018D8已知二次函数y=ax2+bx+c(a0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2
3、)是这个函数图象上的两点,且1x1x2,那么()Aa0,y1y2 Ba0,y1y2 Ca0,y1y2 Da0,y1y29如图,PA、PB、分别切O于A、B两点,P=40,则C的度数为()A40B140C70D8010如图,二次函数的图象,则下列结论正确的是( );ABCD11据路透社报道,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,并减少对进口芯片的严重依赖.华为技术部门还表示,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积.其中0.00000065用科学记数法表示为( )ABCD12如图,直线y1= x+1与双曲线y2=交于A(2,m)、B(6,
4、n)两点则当y1y2时,x的取值范围是( )Ax6或0 x2B6x0或x2Cx6或0 x2D6x2二、填空题(每题4分,共24分)13如图,直线与双曲线交于点,点是直线上一动点,且点在第二象限连接并延长交双曲线与点过点作轴,垂足为点过点作轴,垂足为,若点的坐标为,点的坐标为,设的面积为的面积为,当时,点的横坐标的取值范围为_14若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_15如图,在反比例函数位于第一象限内的图象上取一点P1,连结OP1,作P1A1x轴,垂足为A1,在OA1的延长线上截取A1 B1= OA1,过B1作OP1的平行线,交反比例函数的图象于P2,过
5、P2作P2A2x轴,垂足为A2,在OA2的延长线上截取A2 B2= B1A2,连结P1 B1,P2 B2,则的值是 16如图,在ABC中,中线BF、CE交于点G,且CEBF,如果,那么线段CE的长是_17如图,已知中,将绕点顺时针旋转得到,点、分别为、的中点,若点刚好落在边上,则_.18在长8cm,宽6cm的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是_cm2三、解答题(共78分)19(8分)如图,在中,P是BC上一动点,过P作AP的垂线交CD于E,将翻折得到,延长FP交AB于H,连结AE,PE交AC于G.(1)求证;(2)当时,求AE的长;(3)当时,求AG的长.20
6、(8分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.21(8分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠(1)写出所有的选购方案(用列表法或树状图);(2
7、)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少22(10分)如图,将矩形ABCD绕点C旋转得到矩形EFGC,点E在AD上延长AD交FG于点H(1)求证:EDCHFE;(2)若BCE60,连接BE、CH证明:四边形BEHC是菱形23(10分)在直角坐标平面内,某二次函数图象的顶点为,且经过点(1)求该二次函数的解析式;(2)求直线y=-x-1与该二次函数图象的交点坐标24(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销
8、售量(件与销售价(元/件)之间的函数关系如图所示(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25(12分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件如果这两种软件每天销售总
9、件数不变,那么这两种软件一天的总利润最多是多少?26某公司2019年10月份营业额为万元,12月份营业额达到万元,求该公司两个月营业额的月平均增长率.参考答案一、选择题(每题4分,共48分)1、D【解析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形周长的比等于相似比解答即可【详解】解:两个相似三角形的面积比是1:4,两个相似三角形的相似比是1:2,两个相似三角形的周长比是1:2,故选:D【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键2、A【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的
10、面积,进而可求出正方形的边长,再利用勾股定理得出答案【详解】把顺时针旋转的位置,四边形AECF的面积等于正方形ABCD的面积等于25,中,故选A【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键3、B【分析】根据位似图形的性质只要点的横、纵坐标分别乘以2或2即得答案【详解】解:原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,且A(2,2)、B(3,1),点的坐标为(4,4)或(4,4)故选:B【点睛】本题考查了位似图形的性质,属于基础题型,正确分类、掌握求解的方法是解题关键4、A【解析】试题分析:,又,解这个分式方程并检验,得故选A5、D【
11、解析】根据题意直接利用轴对称图形和中心对称图形的概念求解即可【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既是中心对称图形也是轴对称图形,故此选项正确;故选:D【点睛】本题主要考查中心对称与轴对称的概念即有轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180后与原图重合6、C【分析】过O作OCPB于C,根据直角三角形的性质得到OC3,根据直线与圆的位置关系即可得到结论【详解】解:过O作OCPB于C,APB30,OP6,OCOP33,
12、半径为3的圆与PB的位置关系是相交,故选:C【点睛】本题考查直线与圆的位置关系,掌握含30角的直角三角形的性质是本题的 解题关键.7、C【解析】根据数a的绝对值是指数轴表示数a的点到原点的距离进行解答即可得.【详解】数轴上表示数-2018的点到原点的距离是2018,所以-2018的绝对值是2018,故选C.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的定义是解题的关键.8、C【解析】由当x=2时,函数y有最大值,根据抛物线的性质得a0,抛物线的对称轴为直线x=2,当x2时,y随x的增大而减小,所以由2x2x2得到y2y2【详解】当x=2时,函数y有最大值,a0,抛物线的对称轴为直线x=22x
13、2x2,y2y2故选C【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式也考查了二次函数的性质9、C【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得OAP,OBP的度数,根据四边形的内角和定理即可求的AOB的度数,然后根据圆周角定理即可求解【详解】PA是圆的切线, 同理 根据四边形内角和定理可得: 故选:C.【点睛】考查切线的性质以及圆周角定理,连接圆心与切点是解题的关键.10、B【分析】由二次函数的开口方向,对称轴0 x1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可【详解】二次函数的开口向下,与y轴的交
14、点在y轴的正半轴,a0,c0,故正确;01,b0,故错误;当x1时,yabc0,acb,故正确;二次函数与x轴有两个交点,b24ac0,故正确正确的有3个,故选:C【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c)11、B【分析】把一个数表示成的形式,其中,n是
15、整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】0.00000065=,故选:B.【点睛】此题考察科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,整数等于原数左起第一个非零数字前0的个数,按此方法即可正确求解.12、C【解析】分析:根据函数图象的上下关系,结合交点的横坐标找出不等式y1y1的解集,由此即可得出结论详解:观察函数图象,发现:当x-6或0 x1时,直线y1=x+1的图象在双曲线y1=的图象的下方,当y1y1时,x的取值范围是x-6或0 x1故选C点睛:考查了反比例函数与一次函数的交点问题,解题的关键是依据函数图象的上下关系解不等式本题属于基础题
16、,难度不大,解决该题型题目时,根据函数图象位置的上下关系结合交点的坐标,找出不等式的解集是关键二、填空题(每题4分,共24分)13、-3x-1【分析】根据点A的坐标求出中k,再根据点B在此图象上求出点B的横坐标m,根据结合图象即可得到答案.【详解】A(-1,3)在上,k=-3,B(m,1)在上,m=-3,由图象可知:当时,点P在线段AB上,点P的横坐标x的取值范围是-3x-1,故答案为:-3x-1.【点睛】此题考查一次函数与反比例函数交点问题,反比例函数解析式的求法,正确理解题意是解题的关键.14、【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇
17、形的圆心角的度数即可【详解】圆锥的底面圆的周长是,圆锥的侧面扇形的弧长为 cm,解得:故答案为【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积15、【详解】解:设P1点的坐标为(),P2点的坐标为(b,)OP1B1,B1P2B2均为等腰三角形,A1B1=OA1,A2B2=B1A2,OA1=a,OB1=2a,B1A2=b-2a,B1B2=2(b-2a),OP1B1P2,P1OA1=A2B1P2,RtP1OA1RtP2B1A2,OA1:B1A2=P1A1:P2A2,a:(b-2a)=整理得a2+2ab-b2=0,解得:a=()b或a=()b(舍去)B1B2=2(b-2a)=(6-4)b,故
18、答案为:【点睛】该题较为复杂,主要考查学生对相似三角形的性质和反比例函数上的点的坐标与几何图形之间的关系16、【分析】根据题意得到点G是ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答.【详解】解:延长AG交BC于D点,中线BF、CE交于点G,ABC的两条中线AD、CE交于点G,点G是ABC的重心,D是BC的中点,AG=AD,CG=CE,BG=BF,,.CEBF,即BGC=90,BC=2DG=5,在RtBGC中,CG=,故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,三角形
19、的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍理解三角形重心的性质是解题的关键.17、【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DMBC,垂足为M,过C作CNDE,垂足为N,在RtACB中,AC=8,BC=6,由勾股定理得,AB=10,D为AB的中点,CD= ,由旋转可得,MCN=90,MN=10,E为MN的中点,CE=,DMBC,DC=DB,CM=BM=,EM=CE-CM=5-3=2,DM=,由勾股定理得,DE=,
20、CD=CE=5,CNDE,DN=EN= ,由勾股定理得,CN=,sinDEC= .故答案为:.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.18、1【解析】由题意,在长为8cm宽6cm的矩形中,截去一个矩形使留下的矩形与原矩形相似,根据相似形的对应边长比例关系,就可以求解【详解】解:设宽为xcm,留下的矩形与原矩形相似,解得截去的矩形的面积为留下的矩形的面积为48-21=1cm2,故答案为:1【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键三、解答题(共78分)19、(1)见解析;
21、(2);(3)【分析】(1)先证明P、C、F共线,由余角的性质可证,根据等角对等边证明,再由余角的性质证明和等角对等边证明,结论可证;(2)过A作于M,由勾股定理可求BC=4,然后求出MP的长,再由勾股定理求出AP的长,由是等腰直角三角形可求出AE的长;(3)通过证明,可得,由外角的性质可求出PAF=F=22.5,再根据角的和差和三角形内角和定理证明,然后求出,然后通过证明,利用相似三角形的对应边成比例即可求解.【详解】(1)四边形ABCD是平行四边形,又,故F在AC的延长线上.又,而,而, 又,(2)过A作于M,BC=4,又,BP=3,CP=,由(1)知AP=AE,是等腰直角三角形,;(3)
22、由,且得,而,.【点睛】本题考查了平行四边形的性质,余角的性质,等腰三角形的判定与性质,三角形外角的性质,勾股定理,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.20、(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗.【分析】(1)由题意按照每棵120元进行计算;(2)设设购买了棵树苗,根据单价数量=总价列方程,求解.【详解】解:(1),(元),答:这所学校需向园林公司支付的树苗款为6000元.(2)购买60棵树苗时所需支付的树苗款为元元,该中学购买的树苗超过60棵.又,购买100棵树苗时每棵树苗的售价恰好降至100元.购买树苗超
23、过100棵后,每棵树苗的售价仍为100元,此时所需支付的树苗款超过10000元,而,该中学购买的树苗不超过100棵.设购买了棵树苗,依题意,得,化简,得,解得(舍去),.答:这所中学购买了80棵树苗.【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.21、(1)答案见解析;(2)【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有6种情况,选中A的情况有2种,进而得到概率【详解】解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2种中,概率是【点睛】本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现
24、m种结果,那么事件A的概率P(A)=22、(1)见解析;(2)见解析【解析】(1)依据题意可得到FE=AB=DC,F=EDC=90,FHEC,利用平行线的性质可证明FHE=CED,然后依据AAS证明EDCHFE即可;(2)首先证明四边形BEHC为平行四边形,再证明邻边BE=BC即可证明四边形BEHC是菱形【详解】(1)证明:矩形FECG由矩形ABCD旋转得到,FEABDC,FEDC90,FHEC,FHECED在EDC和HFE中,EDCHFE(AAS);(2)EDCHFE,EHEC矩形FECG由矩形ABCD旋转得到,EHECBC,EHBC,四边形BEHC为平行四边形BCE60,ECBC,BCE是等边三角形,BEBC,四边形BEHC是菱形【点睛】本题主要考查的是旋转的性质、菱形的判定,熟练掌握相关图形的性质和判定定理是解题的关键23、(1);(2)两个函数图象的交点坐标是和【分析】(1)根据题意可设该二次函数的解析式为,把点代入函数解析式,求出a值,进而得出该二次函数的解析式;(2)由题意直线y=-x-1与该二次函数图象有交点得,进行求解进而分析即可.【详解】解:(1)依题意可设该二次函数的解析式为,把代入函数解析式,得,解得,故该二次函数的解析式是.(2)据题意,得,得,.当时,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球及中国移动交战行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国格斗手机游戏行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国探索性测试服务行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国大数据基础设施行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国企业内容管理(ECM)行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国4K机顶盒(STB)行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球与中国洞洞鞋行业发展趋势预测及投资风险剖析研究报告
- 2025-2030儿童公园产业市场深度调研及发展趋势与投资战略研究报告
- 2025-2030保险柜产业规划行业深度调研及投资前景预测研究报告
- 分体空调清洗合同标准文本
- 浙江省丽水市2024-2025学年高二上学期期末教学质量监控英语试题【含答案】
- 辽宁省七校协作体2024-2025学年高二下学期3月联考地理试题(原卷版+解析版)
- 小学教师招聘-《教育学》(小学)押题试卷1
- 换电站工程施工方案
- 一年级美术学情分析
- 供应链管理系统建设方案
- 瓶装液化气送气工培训
- 【课件】中职生职业生涯规划
- 【MOOC】中医与辨证-暨南大学 中国大学慕课MOOC答案
- 2023年秋江苏开放大学公共部门人力资源管理综合大作业
- 零星维修工程 投标方案(技术方案)
评论
0/150
提交评论