版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1方程的两根分别是,则等于 ( )A1B-1C3D-32如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为( )ABCD3计算的结果是( )ABCD4二次函数的图象
2、向上平移个单位得到的图象的解析式为( )ABCD5有一组数据:2,2,2,4,6,7这组数据的中位数为()A2B3C4D66随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是( )A朝上一面的数字恰好是6B朝上一面的数字是2的整数倍C朝上一面的数字是3的整数倍D朝上一面的数字不小于27如图,若点M是y轴正半轴上的任意一点,过点M作PQx轴,分别交函数y(y0)和y(y0)的图象于点P和Q,连接OP和OQ,则下列结论正确是()APOQ不可能等于90BC这两个函数的图象一定关于y轴对称DPOQ的面积是8如图,已知ABCD的对角线BD=4cm,将ABCD绕其对称中心O旋转180,则点D所转过的
3、路径长为( )A4 cmB3 cmC2 cmD cm9某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是( )A抽一次不可能抽到一等奖B抽次也可能没有抽到一等奖C抽次奖必有一次抽到一等奖D抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖10点P(3,5)关于原点对称的点的坐标是()A(3,5)B(3,5)C(5,3)D(3,5)11如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90,则旋转后点D的对应点 的坐标是()A(2,10)B(2,0)C(2,10)或(2,0)D(10,2)或(2,0)12在平面直角坐标系
4、中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有( )A1个B2个C3个D4个二、填空题(每题4分,共24分)13如图,把直角尺的角的顶点落在上,两边分别交于三点,若的半径为.则劣弧的长为_14如图,在矩形中,以点为圆心,以的长为半径画弧交于,点恰好是中点,则图中阴影部分的面积为_.(结果保留)15如图,中,点位于第一象限,点为坐标原点,点在轴正半轴上,若双曲线与的边、分别交于点、,点为的中点,连接、.若,则为_.16若方程的解为,则的值为_17如图,在平面直角坐标系中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数,的图象上,则tanABO的值为_18不等式
5、4x的解集为_三、解答题(共78分)19(8分)如图,ABC的高AD、BE相交于点F求证:20(8分)解下列方程(1);(2).21(8分)如图,BC是O的直径,点A在O上,ADBC垂足为D,弧AE弧AB,BE分别交AD、AC于点F、G(1)判断FAG的形状,并说明理由;(2)如图若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由(3)在(2)的条件下,若BG26,DF5,求O的直径BC22(10分)已知关于的方程求证:方程有两个不相等的实数根若方程的一个根是求另一个根及的值23(10分)如图,已知抛物线y=ax2
6、+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作ACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式; (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值; (3)如图,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.24(10分)如图,在某建筑物AC上,挂着一宣传条幅BC,站在点F处,测得条幅顶端B的仰角为30,往条幅方
7、向前行20米到达点E处,测得条幅顶端B的仰角为60,求宣传条幅BC的长.(,结果精确到0.1米)25(12分)已知关于x的一元二次方程mx22x10.(1)若方程有两个实数根,求m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2x1x2,求m的值26在平面直角坐标系中,已知抛物线y1x24x+4的顶点为A,直线y2kx2k(k0),(1)试说明直线是否经过抛物线顶点A;(2)若直线y2交抛物线于点B,且OAB面积为1时,求B点坐标;(1)过x轴上的一点M(t,0)(0t2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:当k0时,存在实数t(0t
8、2)使得PQ1当2k0.5时,不存在满足条件的t(0t2)使得PQ1参考答案一、选择题(每题4分,共48分)1、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:的两根分别是,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系进行解题.2、D【分析】由切线性质得到,再由等腰三角形性质得到,然后用三角形外角性质得出【详解】切线性质得到故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键3、C【分析】根据二次根式的性质先化简,再根据幂运算的公式计算即可得出结果【详解】解:=,故选C【点睛】本题考查了
9、二次根式的性质和同底数幂的乘方,熟练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键4、B【分析】直接根据“上加下减”的原则进行解答即可【详解】由“上加下减”的原则可知,把二次函数y=x2的图象向上平移2个单位,得到的新图象的二次函数解析式是:y=x2+2.故答案选B.【点睛】本题考查了二次函数图象与几何变换,解题的关键是熟练的掌握二次函数图象与几何变换.5、B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个【详解】解:将这组数据排序得:2,2,2,4,6,7,处在第3、4位两个数的平均
10、数为(4+2)23,故选:B【点睛】考查中位数的意义和求法,找一组数据的中位数需要将这组数据从小到大排列后,处在中间位置的一个数或两个数的平均数即为中位数6、D【解析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可【详解】解:A 朝上一面的数字恰好是6的概率为:16=;B 朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:36=;C 朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:26=;D 朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,故概率为:56=D选项事件发生的概率最大故选D【点睛】此题考查的是求概率问题,掌握概率公式是解决此题
11、的关键7、D【分析】利用特例对A进行判断;根据反比例函数的几何意义得到SOMQOMQMk1,SOMPOMPMk2,则可对B、D进行判断;利用关于y轴对称的点的坐标特征对C进行判断【详解】解:A、当k13,k2,若Q(1,),P(3,),则POQ90,所以A选项错误;B、因为PQx轴,则SOMQOMQMk1,SOMPOMPMk2,则,所以B选项错误;C、当k2k1时,这两个函数的图象一定关于y轴对称,所以C选项错误;D、SPOQSOMQ+SOMP|k1|+|k2|,所以D选项正确故选:D【点睛】本题考查了反比例函数比例系数的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐
12、标原点所构成的三角形的面积是,且保持不变8、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180,半径为OD的弧,故根据弧长公式计算即可【详解】解:BD=4,OD=2点D所转过的路径长=2故选:C【点睛】本题主要考查了弧长公式:9、B【解析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案【详解】A. “抽到一等奖的概率为”,抽一次也可能抽到一等奖,故错误;B. “抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故正确;C. “抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故错误;D. “抽到一等奖的概率为”
13、,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【点睛】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.10、D【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标【详解】解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选D【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律11、C【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可【详解】解:点D(5,3)在边AB上,BC5,BD532,若顺时
14、针旋转,则点在x轴上,O2,所以,(2,0),若逆时针旋转,则点到x轴的距离为10,到y轴的距离为2,所以,(2,10),综上所述,点的坐标为(2,10)或(2,0)故选:C【点睛】本题考查了坐标与图形变化旋转,正方形的性质,难点在于分情况讨论12、C【分析】分x0及x0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论【详解】当x0时,即:,解得:,(不合题意,舍去),当x0时,即:,解得:,函数的图象上的“好点”共有3个故选:C【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x0及x0两种情况,找出关于x的一元二次方程是解题的关键二、填空题(每题4分,
15、共24分)13、【分析】连接OB、OC,如图,先根据圆周角定理求出BOC的度数,再根据弧长公式计算即可.【详解】解:连接OB、OC,如图,A=45,BOC=90,劣弧的长=.故答案为:.【点睛】本题考查了圆周角定理和弧长公式的计算,属于基础题型,熟练掌握基本知识是解题关键.14、【分析】连接EC,先根据题意得出,再得出,然后计算出和的面积即可求解.【详解】连接EC,如下图所示:由题意可得:是中点故填:.【点睛】本题主要考查扇形面积的计算、矩形的性质、解直角三角形,准确作出辅助线是关键.15、【分析】根据反比例函数关系式与面积的关系得SCOESBOD3,由C是OA的中点得SACDSCOD,由CE
16、AB,可知COEAOB,由面积比是相似比的平方得,求出ABC的面积,从而求出AOD的面积,得出结论【详解】过C作CEOB于E,点C、D在双曲线(x0)上,SCOESBOD,SOBD3,SCOE3,CEAB,COEAOB,C是OA的中点,OA2OC,SAOB4312,SAODSAOBSBOD1239,C是OA的中点,SACDSCOD,SCOD,故答案为【点睛】本题考查了反比例函数系数k的几何意义,即在反比例函数的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,所成的三角形的面积是定值|k|,且保持不变16、【分析】根据根与系数的关系可得出、,将其代入式中即
17、可求出结果【详解】解:方程的两根是,、,故答案为:【点睛】本题主要考查了一元二次方程根与系数的关系,牢记如果一元二次方程有两根,那么两根之和等于、两根之积等于是解题的关键17、【分析】根据反比例函数的几何意义可得直角三角形的面积;根据题意可得两个直角三角形相似,而相似比就是直角三角形AOB的两条直角边的比,从而得出答案.【详解】过点A、B分别作ADx轴,BEx轴,垂足为D、E,顶点A,B恰好分别落在函数,的图象上又AOB=90AOD=OBE则tanABO=故本题答案为:.【点睛】本题考查了反比例函数,相似三角形和三角函数的综合题型,连接辅助线是解题的关键.18、x1【分析】按照去分母、去括号、
18、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x182x,移项合并得:3x12,解得:x1,故答案为:x1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.三、解答题(共78分)19、见解析【分析】由题意可证AEFBDF,可得,即可得.【详解】解:证明:AD,BE是ABC的高,ADB=AEF=90,且AFE=BFD,AEFBDF,.【点睛】本题考查了相似三角形的判定与性质,熟练运用相似三角形的性质是本题的关键20、(1),;(2),【分析】(1)利用因式分解法解方程;(2)先变形为(2x-1)2-(x-3)2=0,然后利用因式分解法解方
19、程【详解】(1),或,所以,;(2),或,所以,【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)21、(1)FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC【分析】(1)首先根据圆周角定理及垂直的定义得到BAD+CAD90,C+CAD90,从而得到BADC,然后利用等弧对等角等知识得到AFBF,从而证得FAFG,判定等腰三角形;(2)成立,同(
20、1)的证明方法即可得答案;(3)由(2)知DACAGB,推出BADABG,得到F为BG的中点根据直角三角形的性质得到AFBFBG13,求得ADAFDF1358,根据勾股定理得到BD12,AB4,由ABCABD,BACADB90可证明ABCDBA,根据相似三角形的性质即可得到结论【详解】(1)FAG等腰三角形;理由如下:BC为直径,BAC90,ABE+AGB90,ADBC,ADC90,ACD+DAC90,ABEACD,DACAGB,FAFG,FAG是等腰三角形(2)成立,理由如下:BC为直径,BAC90,ABE+AGB90,ADBC,ADC90,ACD+DAC90,ABEACD,DACAGB,F
21、AFG,FAG是等腰三角形(3)由(2)知DACAGB,且BAD+DAC90,ABG+AGB90,BADABG,AFBF,AFFG,BF=GF,即F为BG的中点,BAG为直角三角形,AFBFBG13,DF5,ADAFDF1358,在RtBDF中,BD12,在RtBDA中,AB4,ABCABD,BACADB90,ABCDBA,BC,O的直径BC【点睛】本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键22
22、、详见解析;,k=1【分析】求出,即可证出结论;设另一根为x1,根据根与系数的关系即可求出结论【详解】解:=k2+80 方程有两个不相等实数根 设另一根为x1,由根与系数的关系: ,k=1【点睛】此题考查的是判断一元二次方程根的情况和根与系数的关系,掌握与根的情况和根与系数的关系是解决此题的关键23、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,). 【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG
23、的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明OMPPNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),OE平分AOB,AOB=90,AOE=45,AOE是等腰直角三角形,AE=OA=3,E(3,3),易得OE的解析式为:y=x,过P作PGy轴,交OE于点G
24、,G(m,m),PG=m-(m2-4m+3)=-m2+5m-3,S四边形AOPE=SAOE+SPOE,=33+PGAE,=+3(-m2+5m-3),=-m2+m,=(m-)2+,-0,当m=时,S有最大值是;(3)如图3,过P作MNy轴,交y轴于M,交l于N,OPF是等腰直角三角形,且OP=PF,易得OMPPNF,OM=PN,P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,P的坐标为(,)或(,);如图4,过P作MNx轴于N,过F作FMMN于M,同理得ONPPMF,PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)
25、或(,)或(,)或(,)点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题24、宣传条幅BC的长为17.3米.【解析】试题分析:先由F=30,BEC=60解得EBF=30=F,从而可得BE=FE=20米,再在RtBEC中由sinBEC=即可解得BC的值.试题解析:BEC=F+EBF,F=30,BEC=60,EBF=60-30=30=F,BE=FE=20(米).在RtBEC中,sinBEC=,BC=BE101.732=17.3217.3(米).25、 (1)m1且m0(2) m2 【分析】(1)根据一元二次方程的定义和判别式得到m0且(2)24m0,然后求解不等式即可;(2)先根据根与系数的关系得到x1x2,x1x2,再将已知条件变形得x1x2(x1x2),然后整体代入求解即可.【详解】(1)根据题意,得m0且(2)24m0,解得m1且m0.(2)根据题意,得x1x2,x1x2,x1x2x1x2,即x1x2(x1x2),解得m2.【点睛】本题考查一元二次方程ax2+bx+c=0(a0)根的判别式和根与系数的关系(韦达定理),根的判别式:(1)当=b24ac0时,方程有两个不相等的实数根;(2)当=b24ac
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度北京生物医药研发合同
- 2024年度北京市小汽车租赁行业培训合同
- 催化转化器市场发展现状调查及供需格局分析预测报告
- 清洁梳市场需求与消费特点分析
- 2024年度广告制作合同:某品牌广告制作协议
- 04版计算机软件开发与授权合同
- 2024年度合同服务内容扩展:供应链管理合同标的的物流方案与风险控制
- 2024年度农产品批量供应与销售合同
- 退热剂市场发展预测和趋势分析
- 电磁阀市场需求与消费特点分析
- GB/T 25052-2024连续热浸镀层钢板和钢带尺寸、外形、重量及允许偏差
- 医院病历书写基本规范培训课件
- 国开2024年秋《机电控制工程基础》形考任务1答案
- 2024年典型事故案例警示教育手册15例
- 三角函数高考题汇编(共12页)
- 船舶风险辩识、评估及管控须知
- 减资专项审计报告
- 投标流程及管理制度
- 章质谱法剖析PPT课件
- 滑触线安装施工方案
- 绿化灌溉用水制度
评论
0/150
提交评论